27.2.1相似三角形的判定第3课时判定定理4第二十七章DBACE(3)∵DE∥BC∴△ADE∽△ABC判定三角形相似的方法ACBEDF(1)∵∠A=∠D,∠B=∠E,∠C=∠FEFBCDFACDEAB∴△ABC∽△DEFEFBCDFACDEAB(4)∵∴△ABC∽△DEF(2)∵DFACDEAB∠A=∠D∴△ABC∽△DEF回顾复习大家一起画一个三角形,三个角分别为60°、45°、75°,大家画出的三角形相似吗?同桌的同学,通过测量对应边的长度进行比较。探究1即:如果一个三角形的三个角分别与另一个三角形的三个角对应相等,那么这两个三角形_______。相似一定需要三个角吗?角边角ASA角角边AAS角角AAA1B1C1ABC已知:△ABC∽△A1B1C1.求证:∠A=∠A1,∠B=∠B1.你能证明吗?如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似。知识要点三角形相似的判定定理:两角分别相等的两个三角形相似。角角AAA1B1C1ABC△ABC∽△A1B1C1.√∠A=∠A1,∠B=∠B1.符号语言:∵∴如果两个三角形有一个内角对应相等,那么这两个三角形一定相似吗?一角对应相等的两个三角形不一定相似。△ACD∽△CBD∽△ABC小知识找出图中所有的相似三角形。“双垂直”三角形BDAC有三对相似三角形:△ACD∽△CBD△CBD∽△ABC△ACD∽△ABC母子相似判定:直角三角形被斜边上的高分成的两个直角三角形和原三角形相似常用的成比例的线段:常用的相等的角:∠A=∠DCB;∠B=∠ACD2ACADAB2BCBDAB2CDADDBACBCABCDBDAC例题1已知:DE∥BC,EF∥AB.求证:△ADE∽△EFC.AEFBCD解:∵DE∥BC,EF∥AB(已知)∴∠ADE=∠B=∠EFC(两直线平行,同位角相等)∠AED=∠C(两直线平行,同位角相等)∴△ADE∽△EFC(两个角分别对应相等的两个三角形相似)探究2已知:△ABC∽△A1B1C1.1111,ABBCkABBC求证:你能证明吗?HLABCA1B1C1Rt△ABC和Rt△A1B1C1.如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似。知识要点三角形相似的判定定理:HLABC△ABC∽△A1B1C1.√A1B1C11111,ABBCkABBC在Rt△ABC和Rt△A1B1C1中符号语言:∵∴如图,C是线段BD上的一点,AB⊥BD,ED⊥BD,AC⊥EC.求证:△ABC∽△CDE.EA1BCD2证明:∵AB⊥BD,ED⊥BD∴∠ABC=∠CDE=90°∴∠1+∠A=90°∵AC⊥EC∴∠1+∠2=90°∴∠A=∠2∴△ABC∽△CDE例题2相似三角形的判定方法:通过定义平行于三角形一边的直线三边对应成比例两边对应成比例且夹角相等两角对应相等两直角三角形的斜边和一条直角边对应成比例(三边对应成比例,三角相等)(SSS)(AA)(SAS)(HL)课堂小结(1)所有的等腰三角形都相似。(2)所有的等腰直角三角形都相似。(3)所有的等边三角形都相似。(4)所有的直角三角形都相似。(5)有一个角是100°的两个等腰三角形都相似。(6)有一个角是70°的两个等腰三角形都相似。(7)若两个三角形相似比为1,则它们必全等。(8)相似的两个三角形一定大小不等。1.判断下列说法是否正确?并说明理由。√×√×√×√×随堂练习2.AD⊥BC于点D,CE⊥AB于点E,且交AD于F,你能从中找出几对相似三角形?BCAEDF100°30°3.下面两组图形中的两个三角形是否相似?为什么?ACBA1C1B1DEFABC相似相似4.过△ABC(∠C∠B)的边AB上一点D作一条直线与另一边AC相交,截得的小三角形与△ABC相似,这样的直线有几条?CD●ABBCADEEBCAD△ADE∽△ABC△AED∽△ABC∠A=∠A∠AED=∠C∠A=∠A∠AED=∠B作DE,使∠AED=∠C作DE,使∠AED=∠B这样的直线有两条:1.过Rt△ABC的斜边AB上一点D作一条直线与另一边AC或者BC相交,使截得的小三角形与△ABC相似,这样的直线有几条?ACABD●2.如图,在△ABC中,DG∥EH∥FI∥BC,(1)请找出图中所有的相似三角形;(2)如果AD=1,DB=3,那么DG:BC=_____。ABCDEFGHI△ADG∽△AEH∽△AFI∽△ABC1:4