26.3实际问题与二次函数第1课时1.掌握商品经济等问题中的相等关系的寻找方法,并会应用函数关系式求利润的最值.2.会应用二次函数的性质解决实际问题.1.二次函数y=2(x-3)2+5的对称轴是,顶点坐标是.当x=时,y有最值,是.2.二次函数y=-3(x+4)2-1的对称轴是,顶点坐标是.当x=时,函数有最___值,是.3.二次函数y=2x2-8x+9的对称轴是,顶点坐标是.当x=时,函数有最____值,是.x=3(3,5)3小5x=-4(-4,-1)-4大-1x=2(2,1)2大1问题:用总长为60m的篱笆围成矩形场地,矩形面积S随矩形一边长l的变化而变化.当l是多少时,场地的面积S最大?分析:先写出S与l的函数关系式,再求出使S最大的l值.矩形场地的周长是60m,一边长为l,则另一边长为m.场地的面积:(0l30).S=l(30-l)即S=-l2+30l60()2l请同学们画出此函数的图象可以看出,这个函数的图象是一条抛物线的一部分,这条抛物线的顶点是函数图象的最高点,也就是说,当l取顶点的横坐标时,这个函数有最大值.51015202530100200lsb30l152a2(1)因此,当时,.225)1(4304422abacS有最大值即l是15m时,场地的面积S最大(S=225㎡).O一般地,因为抛物线y=ax2+bx+c的顶点是最低(高)点,所以当时,二次函数y=ax2+bx+c有最小(大)值.abx2abac442结论:某商品现在的售价为每件60元,每星期可卖出300件,市场调查反映:如调整价格,每涨价1元,每星期要少卖出10件;每降价1元,每星期可多卖出20件.已知商品的进价为每件40元,如何定价才能使利润最大?请同学们带着以下几个问题读题(1)题目中有几种调整价格的方法?(2)题目涉及哪些变量?哪一个量是自变量?哪些量随之发生了变化?分析:调整价格包括涨价和降价两种情况.先来看涨价的情况:⑴设每件涨价x元,则每星期售出商品的利润y也随之变化,我们先来确定y随x变化的函数式.涨价x元,则每星期少卖件,实际卖出件,每件利润为元,因此,所得利润为元.10x(300-10x)(60+x-40)(60+x-40)(300-10x)y=(60+x-40)(300-10x)(0≤x≤30)即y=-10(x-5)2+6250∴当x=5时,y最大值=6250.怎样确定x的取值范围2bx5y105100560006250.2a最大值当时,可以看出,这个函数的图象是一条抛物线的一部分,这条抛物线的顶点是函数图象的最高点,也就是说当x取顶点坐标的横坐标时,这个函数有最大值.由公式可以求出顶点的横坐标.x/元y/元625060005300所以,当定价为65元时,利润最大,最大利润为6250元.也可以这样求最值在降价的情况下,最大利润是多少?请你参考(1)的过程得出答案.解析:设降价x元时利润最大,则每星期可多卖20x件,实际卖出(300+20x)件,每件利润为(60-40-x)元,因此,得利润:y=(300+20x)(60-40-x)=-20(x²-5x+6.25)+6125=-20(x-2.5)²+6125∴x=2.5时,y最大值=6125.你能回答了吧!怎样确定x的取值范围(0<x<20)由(1)(2)的讨论及现在的销售情况,你知道应该如何定价能使利润最大了吗?(1)列出二次函数的解析式,并根据自变量的实际意义,确定自变量的取值范围;(2)在自变量的取值范围内,运用公式法或通过配方法求出二次函数的最大值或最小值.解决这类题目的一般步骤1.(包头·中考)将一条长为20cm的铁丝剪成两段,并以每一段铁丝的长度为周长各做成一个正方形,则这两个正方形面积之和的最小值是cm2.5.12225或2.某商店购进一种单价为40元的篮球,如果以单价50元售出,那么每月可售出500个,据销售经验,售价每提高1元,销售量相应减少10个.(1)假设销售单价提高x元,那么销售每个篮球所获得的利润是_______元,这种篮球每月的销售量是个(用x的代数式表示).(2)8000元是否为每月销售篮球的最大利润?如果是,说明理由,如果不是,请求出最大月利润,此时篮球的售价应定为多少元?x+1050010x8000元不是每月最大利润,最大月利润为9000元,此时篮球的售价为70元.3.(荆门·中考)某商店经营一种小商品,进价为2.5元,据市场调查,销售单价是13.5元时平均每天销售量是500件,而销售单价每降低1元,平均每天就可以多售出100件.(1)假设每件商品降低x元,商店每天销售这种小商品的利润是y元,请你写出y与x之间的函数关系式,并注明x的取值范围.(2)每件小商品销售单价是多少元时,商店每天销售这种小商品的利润最大?最大利润是多少?(注:销售利润=销售收入-购进成本)解析:(1)降低x元后,所销售的件数是(500+100x),y=-100x2+600x+5500(0<x≤11)(2)y=-100x2+600x+5500(0<x≤11)配方得y=-100(x-3)2+6400,当x=3时,y的最大值是6400元.即降价3元时,利润最大.所以销售单价为10.5元时,最大利润为6400元.答:销售单价为10.5元时,最大利润为6400元.4.(菏泽·中考)我市一家电子计算器专卖店每只计算器进价13元,售价20元,多买优惠:凡是一次买10只以上的,每多买1只,所买的全部计算器每只就降低0.10元,例如,某人买20只计算器,于是每只降价0.10×(20-10)=1(元),因此,所买的全部20只计算器都按照每只19元计算,但是最低价为每只16元.(1)求一次至少买多少只,才能以最低价购买?(2)写出该专卖店当一次销售x(只)时,所获利润y(元)与x(只)之间的函数关系式,并写出自变量x的取值范围;(3)若店主一次卖的只数在10只至50只之间,问一次卖多少只获得的利润最大?其最大利润为多少?【解析】(1)设一次购买x只,才能以最低价购买,则有:0.10×(x-10)=20-16,解这个方程得x=50.答:一次至少买50只,才能以最低价购买(2)(说明:因三段图象首尾相连,所以端点10、50包括在哪个区间均可)(3)将配方得,所以店主一次卖40只时可获得最高利润,最高利润为160元.(也可用公式法求得)21yx8x1021y(x40)160105.(安徽•中考)春节期间某水库养殖场为适应市场需求,连续用20天时间,采用每天降低水位以减少捕捞成本的办法,对水库中某种鲜鱼进行捕捞、销售.九(1)班数学建模兴趣小组根据调查,整理出第x天(1≤x≤20且x为整数)的捕捞与销售的相关信息如表:(1)在此期间该养殖场每天的捕捞量与前一天的捕捞量相比是如何变化的?(2)假定该养殖场每天捕捞和销售的鲜鱼没有损失,且能在当天全部售出,求第x天的收入y(元)与x(天)之间的函数关系式?(当天收入=日销售额-日捕捞成本)(3)试说明(2)中的函数y随x的变化情况,并指出在第几天y取得最大值,最大值是多少?解:(1)该养殖场每天的捕捞量与前一天相比减少10kg;(2)由题意,得2xy20(95010x)(5)(95010x)52x40x14250.(3)∵-2<0,y=-2x2+40x+14250=-2(x-10)2+14450,又∵1≤x≤20且x为整数,∴当1≤x≤10时,y随x的增大而增大;当10≤x≤20时,y随x的增大而减小;当x=10,即在第10天时,y取得最大值,最大值为14450元.1.主要学习了如何将实际问题转化为数学问题,特别是如何利用二次函数的有关性质解决实际问题的方法.2.利用二次函数解决实际问题时,写出二次函数表达式是解决问题的关键.一个人有了远大的理想,就是在最艰苦困难的时候,也会感到幸福.——佚名