24.2.1点和圆的位置关系我国射击运动员在奥运会上获金牌,为我国赢得荣誉.如图是射击靶的示意图,它是由许多同心圆(圆心相同,半径不相同)构成的,你知道击中靶上不同位置的成绩是如何计算的吗?解决这个问题要研究点和圆的位置关系.r问题2:设⊙O半径为r,说出点A,点B,点C与圆心O的距离与半径的关系:·COABOCr.问题1:观察图中点A,点B,点C与圆的位置关系?点C在圆外.点A在圆内,点B在圆上,OAr,OB=r,设⊙O的半径为r,点P到圆心的距离OP=d,则有:点P在圆上d=r;点P在圆外d>r.点P在圆内d<r;符号读作“等价于”,它表示从符号的左端可以得到右端从右端也可以得到左端.r·OA问题3:反过来,已知点到圆心的距离和圆的半径的数量关系,能否判断点和圆的位置关系?PPP射击靶图上,有一组以靶心为圆心的大小不同的圆,他们把靶图由内到外分成几个区域,这些区域用由高到底的环数来表示,射击成绩用弹着点位置对应的环数来表示.弹着点与靶心的距离决定了它在哪个圆内,弹着点离靶心越近,它所在的区域就越靠内,对应的环数也就越高,射击的成绩越好.你知道击中靶上不同位置的成绩是如何计算的吗?设⊙O的半径为r,点到圆心的距离为d。则点和圆的位置关系点在圆内d﹤r点在圆上点在圆外d=rdr练习:1.已知圆的半径等于5厘米,点到圆心的距离是:A、8厘米B、4厘米C、5厘米。请你分别说出点与圆的位置关系。●●●●O2.如图已知矩形ABCD的边AB=3厘米,AD=4厘米ADCB(1)以点A为圆心,3厘米为半径作圆A,则点B、C、D与圆A的位置关系如何?(B在圆上,D在圆外,C在圆外)(2)以点A为圆心,4厘米为半径作圆A,则点B、C、D与圆A的位置关系如何?(B在圆内,D在圆上,C在圆外)(3)以点A为圆心,5厘米为半径作圆A,则点B、C、D与圆A的位置关系如何?(B在圆内,D在圆内,C在圆上)●A●A●B过一点可作几条直线?过两点可以作几条直线?过三点呢?过两点有且只有一条直线(直线公理)(“有且只有”就是“确定”的意思)•经过一点可以作无数条直线;过三点1、若三点共线,则过这三点只能作一条直线.ABC2、若三点不共线,则过这三点不能作直线,但过任意其中两点一共可作三条直线.ABC直线公理:两点确定一条直线对于一个圆来说,过几个点能作一个圆,并且只能作一个圆?过一点能作几个圆?无数个A过A点的圆的圆心有何特点?平面上除A点外的任意一点过两点能作几个圆?AB过A、B两点的圆的圆心有何特点?经过两点A,B的圆的圆心在线段AB的垂直平分线上.以线段AB的垂直平分线上的任意一点为圆心,这点到A或B的距离为半径作圆.●O●OABC1、连结AB,作线段AB的垂直平分线DE,OGF2、连结BC,作线段BC的垂直平分线FG,交DE于点O,3、以O为圆心,OB为半径作圆,作法:⊙O就是所求作的圆已知:不在同一直线上的三点A、B、C求作:⊙O,使它经过A、B、C1、三点不共线请你证明你作的圆符合要求•证明:∵点O在AB的垂直平分线上,•∴OA=OB.同理,OB=OC.∴OA=OB=OC.∴点A,B,C在以O为圆心,OA长为半径的圆上.∴⊙O就是所求作的圆,•在上面的作图过程中.•∵直线DE和FG只有一个交点O,并且点O到A,B,C三个点的距离相等,∴经过点A,B,C三点可以作一个圆,并且只能作一个圆.ABCOGF定理:不在同一直线上的三点确定一个圆OABCO1.由定理可知:经过三角形三个顶点可以作一个圆.并且只能作一个圆.2.经过三角形各顶点的圆叫做三角形的外接圆.3.三角形外接圆的圆心叫做三角形的外心,这个三角形叫做这个圆的内接三角形.ABC圆的内接三角形三角形的外接圆三角形的外心ABCO外心1.三边垂直平分线的交点2.到三个顶点距离相等OABCABCO直角三角形外心是斜边AB的中点钝角三角形外心在△ABC的外面三角形的外心是否一定在三角形的内部?2.经过同一条直线三个点能作出一个圆吗?l1l2ABCP如图,假设过同一条直线l上三点A、B、C可以作一个圆,设这个圆的圆心为P,那么点P既在线段AB的垂直平分线l1上,又在线段BC的垂直平分线l2上,即点P为l1与l2的交点,而l1⊥l,l2⊥l这与我们以前学过的“过一点有且只有一条直线与已知直线垂直”相矛盾,所以过同一条直线上的三点不能作圆.先假设命题的结论不成立,然后由此经过推理得出矛盾(常与公理、定理、定义或已知条件相矛盾),由矛盾判定假设不正确,从而得到原命题成立,这种方法叫做反证法.什么叫反证法?一、判断题:1、过三点一定可以作圆()2、三角形有且只有一个外接圆()3、任意一个圆有一个内接三角形,并且只有一个内接三角形()4、三角形的外心就是这个三角形任意两边垂直平分线的交点()5、三角形的外心到三边的距离相等()错对错对错二、思考:如图,CD所在的直线垂直平分线段AB,怎样用这样的工具找到圆形工件的圆心.DABCO∵A、B两点在圆上,所以圆心必与A、B两点的距离相等,又∵和一条线段的两个端点距离相等的点在这条线段的垂直平分线上,∴圆心在CD所在的直线上,因此可以做任意两条直径,它们的交点为圆心.三、如何解决“破镜重圆”的问题:ABCO圆心一定在弦的垂直平分线上1、思考:任意四个点是不是可以作一个圆?请举例说明.不一定1).四点在一条直线上不能作圆。3).四点中任意三点不在一条直线可能作圆也可能作不出一个圆.ABCDABCDABCDABCD2).三点在同一直线上,另一点不在这条直线上不能作圆;2、为美化校园,学校要把一块三角形空地扩建成一个圆形喷水池,在三角形三个顶点处各有一棵名贵花树(A、B、C),若不动花树,还要建一个最大的圆形喷水池,请设计你的实施方案。CBA回顾本节课的学习历程,你有哪些收获(知识、方法)?还有什么疑问?我学会了什么?过两点可以作无数个圆.圆心在以已知两点为端点的线段的垂直平分线上.实际问题过一点可以作无数个圆过三点过不在同一条直线上的三点确定一个圆过在同一直线上的三点不能作圆外心、三角形外接圆、圆的内接三角形实际问题作圆引入解决类比你长着一对翅膀。坚韧地飞吧,不要为风雨所折服;诚挚地飞吧,不要为香甜的蜜汁所陶醉。朝着明确的目标,飞向美好的人生。结束寄语祝同学们学习进步,学有所成!