导入新课讲授新课当堂练习课堂小结19.1.2函数的图象第十九章一次函数第2课时函数的表示方法情境引入学习目标1.了解函数的三种表示方法及其优点.2.能用适当的方式表示简单实际问题中的变量之间的函数关系.(重点)3.能对函数关系进行分析,对变量的变化情况进行初步讨论.(难点)导入新课复习引入购买一些铅笔,单价为0.2元/支,总价y元随铅笔支数x变化,指出其中的常量与变量,写出y与x之间的函数解析式.答:常量是0.2,变量是x和y,y=0.2x.问题:除了用解析式表示两个变量之间的函数关系,还有其他方法吗?讲授新课函数的三种表示方法用平面直角坐标系中的一个图象来表示的.问题1.下图是某地气象站用自动温度记录仪描出的某一天的温度曲线,气温T是不是时间t的函数?这里是怎样表示气温T与时间t之间的函数关系的?是合作探究问题2.正方形的面积S与边长x的取值如下表,S是不是x的函数?这里是怎样表示正方形面积S与边长x之间的函数关系的?列表格来表示的.14916253649是问题3.某城市居民用的天然气,1m3收费2.88元,使用x(m3)天然气应缴纳的费用y(元)为y=2.88x.y是不是x的函数?这里是怎样表示缴纳的天然气费y与所用天然气的体积x的函数关系的?用函数解析式y=2.88x来表示.是函数的三种表示法:y=2.88x图象法、列表法、解析式法.14916253649知识要点1.解析式法:准确地反映了函数与自变量之间的数量关系.2.列表法:具体地反映了函数与自变量的数值对应关系.3.图象法:直观地反映了函数随自变量的变化而变化的规律.议一议这三种表示函数的方法各有什么优点?典例精析例一水库的水位在最近5h内持续上涨,下表记录了这5h内6个时间点的水位高度,其中t表示时间,y表示水位高度.(1)在平面直角坐标系中描出表中数据对应的点,这些点是否在一条直线上?由此你发现水位变化有什么规律?t/h012345y/m33.33.63.94.24.5x/时y/米O123456781234解:可以看出,这6个点,且每小时水位.由此猜想,在这个时间段中水位可能是以同一速度均匀上升的.在同一直线上上升0.3m5(2)水位高度y是否为时间t的函数?如果是,试写出一个符合表中数据的函数解析式,并画出函数图象.这个函数能表示水位的变化规律吗?(2)由于水位在最近5小时内持续上涨,对于时间t的每一个确定的值,水位高度y都有的值与其对应,所以,yt的函数.函数解析式为:.自变量的取值范围是:.它表示在这小时内,水位匀速上升的速度为,这个函数可以近似地表示水位的变化规律.唯一是y=0.3t+30≤t≤550.3m/h(3)据估计这种上涨规律还会持续2h,预测再过2h水位高度将达到多少m.(3)如果水位的变化规律不变,按上述函数预测,再持续2小时,水位的高度:.此时函数图象(线段AB)向延伸到对应的位置,这时水位高度约为m.5.1m右5.1如图,要做一个面积为12m2的小花坛,该花坛的一边长为xm,周长为ym.(1)变量y是变量x的函数吗?如果是,写出自变量的取值范围;(2)能求出这个问题的函数解析式吗?(3)当x的值分别为1,2,3,4,5,6时,请列表表示变量之间的对应关系;(4)能画出函数的图象吗?x做一做解:(1)y是x的函数,自变量x的取值范围是x>0.(2)y=2(x+)12xx/m123456y/m2616141414.816403530252015105510Oxy(3)当堂练习1.用列表法与解析式法表示n边形的内角和m(单位:度)是边数n的函数.解:因为n表示的是多边形的边数,所以n是大于等于3的自然数,列表如下:n3456…m…所以m=(n-2)·180°(n≥3,且n为自然数).180360540720提示:n边形的内角和公式是:(n-2)×180°.2.用解析式法与图象法表示等边三角形的周长l是边长a的函数.a…1234…l…36912…描点、连线:用描点法画函数l=3a的图象.O2xy123458641012解:因为等边三角形的周长l是边长a的3倍,所以周长l与边长a的函数关系可表示为l=3a(a>0).3.一条小船沿直线向码头匀速前进.在0min,2min,4min,6min时,测得小船与码头的距离分别为200m,150m,100m,50m.(1)小船与码头的距离是时间的函数吗?(2)如果是,写出函数的解析式,并画出函数图象.函数解析式为:.列表:t/min0246……s/m20015010050……是s=200-25t船速度为(200-150)÷2=25m/min,s=200-25tt/mins/mO123456750100150200画图:课堂小结函数的表示方法解析式法:反映了函数与自变量之间的数量关系列表法:反映了函数与自变量的数值对应关系图象法:反映了函数随自变量的变化而变化的规律