回眸点睛考题分类复习归纳课后演练小结和复习第二十章数据的分析数据的代表平均数中位数众数数据的波动极差方差用样本估计总体用样本平均数估计总体平均数用样本方差估计总体方差平均数中位数众数集中趋势波动大小极差方差数字特征回眸点睛平均数定义一组数据的平均值称为这组数据的平均数算术平均数一般地,如果有n个数x1,x2,…,xn,那么_____________________叫做这n个数的平均数加权平均数一般地,如果在n个数x1,x2,…,xn中,x1出现f1次,x2出现f2次,…,xk出现fk次(其中f1+f2+…+fk=n),那么,x=______________________叫做x1,x2,…,xk这k个数的加权平均数,其中f1,f2,…,fk叫做x1,x2,…,xk的权,f1+f2+…+fk=nx=1n(x1+x2+…+xn)1n(x1f1+x2f2+…+xkfk)中位数定义将一组数据按照由小到大(或由大到小)的顺序排列,如果数据的个数是奇数,则处于_________________就是这组数据的中位数,如果数据的个数是偶数,则中间____________________就是这组数据的中位数防错提醒确定中位数时,一定要注意先把整组数据按照大小顺序排列,再确定众数定义一组数据中出现次数________的数据叫做这组数据的众数防错提醒(1)一组数据中众数不一定只有一个;(2)当一组数据中出现异常值时,其平均数往往不能正确反映这组数据的集中趋势,就应考虑用中位数或众数来考查中间位置的数两个数据的平均数最多方差越大,数据的波动越________,反之也成立设有n个数据x1,x2,x3,…,xn,各数据与它们的____________的差的平方分别是(x1-x)2,(x2-x)2,…,(xn-x)2,我们用它们的平均数,即用________________________来衡量这组数据的波动大小,并把它叫做这组数据的方差,记作s2方差极差是最简单的一种度量数据波动情况的量,但它受极端值的影响较大一组数据中的_____________与__________的差,叫做这组数据的极差,它反映了一组数据波动范围的大小极差意义定义表示波动的量最大数据最小数据平均数1n[(x1-x)2+(x2-x)2+…+(xn-x)2]大1.统计的基本思想:样本特征估计总体的特征.2.统计的决策依据:利用数据进行决策时,要全面、多角度地去分析已有数据,从数据的变化中发现它们的规律和变化趋势,减少人为因素的影响.用样本估计总体题型一平均数、中位数、众数及其应用为迎接某次运动会在某市的召开,该市将举办以“我为运动添光彩”为主题的演讲比赛.某县经过紧张的预赛,王锐、李红和张敏三人脱颖而出,他们的创作部分和演讲部分的成绩如下表所示,扇形统计图是当地的450名演讲爱好者对他们三人进行“我喜欢的选手”投票后的统计情况(没有弃权票,并且每人只能推选1人).图20-4王锐李红张敏创作95分90分88分演讲82分85分90分1.考题分类(1)请计算三位参赛选手的得票数各是多少?解:由题意,王锐的得票数:30%×450=135(张);李红的得票数:36%×450=162(张);张敏的得票数:34%×450=153(张).(2)现要从王锐、李红和张敏三人中推选一人代表该地区参加全市的决赛,推选方案为:①演讲爱好者所投票,每票记1分;②将创作、演讲、得票三项所得分按4∶5∶1的比例确定个人成绩.请计算三位选手的个人成绩,从他们的个人成绩看,谁将会被推选参加该市的决赛?解:王锐的个人成绩:4×95+5×82+1×1354+5+1=92.5(分);李红的个人成绩:4×90+5×85+1×1624+5+1=94.7(分);张敏的个人成绩:4×88+5×90+1×1534+5+1=95.5(分).∴张敏将会被推选参加该市的决赛.2.2010年因干旱影响,凉山州政府鼓励居民节约用水,为了解居民用水情况,在某小区随机抽查了20户家庭的月用水量,结果如下表:则关于这20户家庭的月用水量,下列说法错误的是()A.中位数是6吨B.平均数是5.8吨C.众数是6吨D.极差是4吨变式题:四个数据8,10,x,10的平均数与中位数相等,则x等于()A.8B.10C.12D.8或12DD1.在某旅游景区上山的一条小路上,有一些断断续续的台阶,如图所示,是其中的甲、乙台阶的示意图,请你用学过的统计知识回答下列问题:151616141415151118171019甲路段乙路段(1)两段台阶路有哪些相同点和不同点?解:2:3215:,152极差中位数甲甲,,Sx9:33516:,152极差中位数甲乙,,Sx相同点:两段台阶的平均高度相同;不同点:两段台阶的中位数、方差和极差不同.题型二极差、方差及其应用151616141415151118171019甲路段乙路段(2)哪段台阶路走起来更舒服?为什么?(3)为方便游客行走,需要重新整修上山的小路,对于这两段台阶,在台阶数不变的情况下,请你提出合理的整修建议.解:使每个台阶的高度均为15cm,使得方差为0.解:甲台阶走起来更舒服些,因为它的台阶高度的方差小.题型三数据分析的应用1.2014年7月25日全国青少年校园足球比赛落幕,某学校为了解本校2400名学生对本次足球赛的关注程度,以利于做好教育和引导工作,随机抽取了本校内的六、七、八、九四个年级部分学生进行调查,按“各年级被抽取人数”与“关注程度”,分别绘制了条形统计图(图1-1)、扇形统计图(图1-2)和折线统计图(图2).(1)本次共随机抽查了名学生,根据信息补全图(1-1)中条形统计图,图(1-2)中八年级所对应扇形的圆心角的度数为;200144°补全如图(2)如果把“特别关注”、“一般关注”、“偶尔关注”都看作成关注,那么全校关注足球赛的学生大约有多少名?(2)根据题意得:关注的学生所占的百分比为,所以全校关注足球赛的学生大约有2400×55%=1320(人);(3)①根据上面的统计结果,谈谈你对该校学生对足球关注的现状的看法及建议;(3)①根据以上所求可得出:只有55%的学生关注足球,有45%的学生不关注,可以看出仍有部分学生忽略了足球的关注,希望学校做好教育与引导工作,加大对足球进校园的宣传力度,让校园足球得到更多的关注和支持,推动校园足球的发展.(3)②如果要了解学校中小学生校园足球的关注情况,你认为应该如何进行抽样?②考虑到样本具有的随机性、代表性、广泛性,如果要了解中小学生对足球的关注的情况,抽样时应针对不同的年级、不同性别、不同年龄段的学生进行随机抽样.1.平均数、中位数、众数及其应用2.极差、方差及其应用3.数据分析的应用复习归纳首页1.四川雅安发生地震灾害后,某中学九(1)班学生积极捐款献爱心,如图35-3所示是该班50名学生的捐款情况统计,则他们捐款金额的众数和中位数分别是()A.20,10B.10,20C.16,15D.15,16B课后演练2.小张和小李去练习射击,第一轮10发子弹打完后,两人的成绩如图.根据图中的信息,小张小李两人中成绩较稳定的是.小张3.为了解2012年全国中学生创新能力大赛中竞赛项目“知识产权”的笔试情况,随机抽查了部分参赛同学的成绩,整理并绘制了如下尚不完整的统计表和如图的统计图.分数段频数频率50≤x<60300.170≤x<8090n80≤x<90m0.490≤x≤100600.2分数段频数频率50≤x<60300.170≤x<8090n80≤x<90m0.490≤x≤100600.2请根据以上图表提供的信息,解答下列问题:(1)本次调查的样本容量为________;(2)在表中:m=____,n=________;(3)补全频数分布直方图;(4)参加比赛的小聪说,他的比赛成绩是所有抽查同学成绩的中位数,据此推断他的成绩落在________分数段内;3001200.380≤x<90(5)如果比赛成绩80分以上(含80分)为优秀,那么你估计该竞赛项目的优秀率大约是________.60%