20.2数据的集中趋势1.中位数和众数1.掌握中位数和众数的定义,并会求一组数据的中位数和众数.(重点)2.会利用中位数、众数分析数据信息,做出决策.(难点)分析下面的两组数据:(1)3,2,5,2,7.(2)5,7,2,6,8,5,9,5.将这两组数据按从小到大的顺序排列为:(1)2,2,3,5,7.(2)2,5,5,5,6,7,8,9.【总结】(1)将一组数据按照_________(或_________)的顺序排列,如果数据的个数是奇数,则称处于_____位置的数为这组数据的中位数;如果数据的个数是偶数,则称_____两个数的_______为这组数据的中位数.(2)一组数据中出现_________的数据称为这组数据的众数.由小到大由大到小中间中间平均数次数最多(打“√”或“×”)(1)数据2,5,1,3,4的中位数为1.()(2)数据5,6,2,4,6,1中没有中位数.()(3)数据2,5,8,5,7,9的众数为5.()(4)一组数据的众数是唯一的.()(5)在数据1,2,3,4,3中3出现次数最多,出现两次,故众数为2.()××√××知识点1中位数与众数【例1】张老师想对同学们的打字能力进行测试,他将全班同学分成五组.经统计,这五个小组平均每分钟打字个数如下:100,80,x,90,90.已知这组数据的众数与平均数相等,那么这组数据的中位数是.【解题探究】(1)数据中的x能为100或80吗?提示:不能.若x为100或80,则这组数据中的众数应为两个,此时这组数据的众数与平均数不可能相等.(2)这组数据的众数为___.这组数据的平均数是___________________.901(10080x9090)5(3)根据众数与平均数相等,列出的方程是什么?其解是多少?提示:(100+80+x+90+90)=90.解这个方程得x=90.(4)这组数据按从小到大的顺序排列后是怎样的?这组数据的中位数是多少?提示:排列:80,90,90,90,100.这组数据的中位数是90.15【总结提升】求中位数和众数的步骤及注意点(1)求中位数的步骤:①排序:将一组数据按照由小到大(或由大到小)的顺序排列.②找中位数:如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.(2)求众数的步骤:①统计各个数据出现的次数.②找出出现次数最多的数据,即众数.(3)注意点:①一组数据的中位数不一定出现在这组数据中,而众数一定出现在这组数据中.②一组数据的中位数是唯一的,而众数可能不止一个.③由一组数据的中位数可以知道中位数以上和以下的数据各占一半.④中位数仅与数据的大小排列位置有关,而众数只与数据出现的次数有关.知识点2中位数与众数的应用【例2】我们约定:如果身高在选定标准的±2%范围之内都称为“普通身高”.为了解某校九年级男生中具有“普通身高”的人数,我们从该校九年级男生中随机选出10名男生,分别测量出他们的身高(单位:cm),收集并整理成如下统计表:男生序号①②③④⑤⑥⑦⑧⑨⑩身高x(cm)163171173159161174164166169164根据以上表格信息,解答如下问题:(1)计算这组数据的三个统计量:平均数、中位数和众数.(2)请你选择其中一个统计量作为选定标准,找出这10名男生中具有“普通身高”的是哪几位男生?说明理由.(3)若该年级共有280名男生,按(2)中选定标准,请你估算出该年级男生中具有“普通身高”的人数有多少?【思路点拨】(1)根据平均数的计算公式→计算平均数→将10个数据按大小依次排列→求中位数→统计数据出现的次数→众数.(2)分别以(1)中计算出的平均数、中位数和众数为标准→计算“普通身高”的范围→挑选具有普通身高的学生.(3)根据(2)中按不同标准挑选的男生人数占10人的比估算具有“普通身高”的总人数.【自主解答】(1)平均数为:=166.4(cm).中位数为:=165(cm).众数为:164cm.163171173159161174164166169164101661642(2)设“普通身高”为xcm,若平均数作为标准:x满足166.4×(1-2%)≤x≤166.4×(1+2%),即163.072≤x≤169.728时为“普通身高”,则序号为⑦⑧⑨⑩的男生的身高具有“普通身高”.若中位数作为标准:x满足165×(1-2%)≤x≤165×(1+2%),即161.7≤x≤168.3时为“普通身高”,则序号为①⑦⑧⑩的男生的身高具有“普通身高”.若众数作为标准:x满足164×(1-2%)≤x≤164×(1+2%),即160.72≤x≤167.28时为“普通身高”,则序号为①⑤⑦⑧⑩的男生的身高具有“普通身高”.(3)平均数作为标准,估计全年级男生中具有“普通身高”的人数为:280×=112(人).中位数作为标准,估计全年级男生中具有“普通身高”的人数为:280×=112(人).众数作为标准,估计全年级男生中具有“普通身高”的人数为:280×=140(人).410410510【总结提升】中位数与众数的“特点”(1)中位数:是一组数据中间位置上的代表值,在一组互不相等的数据中,小于和大于它们中位数的数据各占一半.(2)众数:其特点是不受数据极端值的影响,在条形统计图中,众数是最高的长方形表示的数,一目了然.题组一:中位数与众数1.(2013·梅州中考)数据2,4,3,4,5,3,4的众数是()A.5B.4C.3D.2【解析】选B.这组数据中4出现了3次,次数最多,所以这组数据的众数为4.2.(2013·苏州中考)一组数据:0,1,2,3,3,5,5,10的中位数是()A.2.5B.3C.3.5D.5【解析】选B.将这组数据从小到大排列为0,1,2,3,3,5,5,10,最中间两个数的平均数是:(3+3)÷2=3,则中位数是3.【变式备选】由小到大的一组数:1,2,x,5,6,7中,这组数的中位数是4,则x为()A.2B.3C.4D.5【解析】选B.根据中位数的定义可得(x+5)÷2=4,解得x=3.3.(2013·上海中考)数据0,1,1,3,3,4的中位数和平均数分别是()A.2和2.4B.2和2C.1和2D.3和2【解析】选B.由于给出的数据是一组从小到大排列的数据,所以中位数为平均数为1322,0113342.64.关于数据3.9,4.1,3.9,3.8,4.2下列说法错误的是()A.众数是3.9B.平均数是3.98C.中位数是3.98D.最大值与最小值的差为0.4【解析】选C.3.9有2个,出现的次数最多,众数是3.9,因此选项A正确,不符合题意;平均数为(3.9+4.1+3.9+3.8+4.2)÷5=3.98,因此选项B正确,不符合题意;这组数据从大到小排列为4.2,4.1,3.9,3.9,3.8.因此,中位数是3.9,因此选项C错误,符合题意.选项D:最大值为4.2,最小值为3.8,其差为0.4,正确,不符合题意.5.(2013·镇江中考)有一组数据:2,3,5,5,x,它们的平均数是10,则这组数据的众数是______.【解析】由题意得(2+3+5+5+x)=10,解得x=35,这组数据中5出现的次数最多,则这组数据的众数为5.答案:5156.(2013·义乌中考)若数据2,3,-1,7,x的平均数为2,则x=______.【解析】∵2=(2+3-1+7+x),10=11+x,∴x=-1.答案:-115题组二:中位数与众数的应用1.(2013·济南中考)为了解七年级学生参与家务劳动的时间,李老师随机调查了七年级8名学生一周内参与家务劳动的时间(单位:小时)分别是:1,2,3,3,3,4,5,6.则这组数据的众数是()A.2.5B.3C.3.375D.5【解析】选B.因为数据“3”的个数为3个,出现次数最多,因此众数是3.2.(2013·株洲中考)孔明同学参加暑假军事训练的射击成绩如表:则孔明射击成绩的中位数是()A.6B.7C.8D.9【解析】选C.将数据从小到大排列为:6,7,8,9,9,所以中位数为8.射击次序第一次第二次第三次第四次第五次成绩(环)987963.(2013·吉林中考)端午节期间,某市一周每天最高气温(单位:℃)情况如图所示,则这组表示最高气温数据的中位数是()A.22B.24C.25D.27【解析】选B.把这组数据从小到大排列为:20,22,22,24,25,26,27,最中间的数是24,则中位数是24.4.(2013·舟山中考)在某次体育测试中,九(1)班6位同学的立定跳远成绩(单位:米)分别为:1.71,1.85,1.85,1.95,2.10,2.31.则这组数据的众数是()A.1.71B.1.85C.1.90D.2.31【解析】选B.∵众数的定义表明,在一组数据中,出现次数最多的数就是众数,而这组数据中,数字1.85出现了2次,次数最多,∴1.85是这组数据的众数.5.(2013·厦门中考)在一次中学生田径运动会上,参加男子跳高的15名运动员成绩如表:则这些运动员成绩的中位数是m.【解析】表格中数据从左到右是按从小到大的顺序排列的,最中间的数是1.65,所以中位数是1.65m.答案:1.65成绩(m)1.501.601.651.701.751.80人数(人)2332416.(2013·铜仁中考)某公司80名职工的月工资如下:则该公司职工月工资数据中的众数是.【解析】数据2000出现了22次,次数最多,所以该公司职工月工资数据中的众数是2000.答案:2000月工资(元)18000120008000600040002500200015001200人数1234102022126【想一想错在哪?】爱华中学生物兴趣小组调查了本地区几棵古树的生长年代,记录数据如下(单位:年):200,240,220,200,210.求这组数据的中位数.提示:本题错在求中位数时没将数据按大小顺序排列.