第八章立体几何第二节空间图形的基本关系与公理2[最新考纲]1.理解空间直线、平面位置关系的定义.2.了解可以作为推理依据的公理和定理.3.能运用公理、定理和已获得的结论证明一些空间位置关系的简单命题.3课前自主回顾41.四个公理(1)公理1:过_________________的三点,有且只有一个平面(即可以确定一个平面).(2)公理2:如果一条直线上的_____在一个平面内,那么这条直线在此平面内(即直线在平面内).不在一条直线上两点5拓展:公理2的三个推论推论1:经过一条直线和这条直线外一点有且只有一个平面.推论2:经过两条相交直线有且只有一个平面.推论3:经过两条平行直线有且只有一个平面.6(3)公理3:如果两个不重合的平面有一个公共点,那么它们_______________过该点的公共直线.(4)公理4:平行于同一条直线的两条直线_____.2.直线与直线的位置关系(1)位置关系的分类共面直线_____直线_____直线异面直线:不同在_____一个平面内,没有公共点有且只有一条平行相交平行任何7(2)异面直线所成的角①定义:设a,b是两条异面直线,经过空间任一点O作直线a′∥a,b′∥b,把a′与b′所成的_____________叫做异面直线a与b所成的角(或夹角).②范围:___________.锐角(或直角)(0°,90°]8拓展:异面直线判定的一个定理过平面外一点和平面内一点的直线,与平面内不过该点的直线是异面直线,如图所示.93.空间中直线与平面、平面与平面之间的位置关系(1)空间中直线与平面的位置关系位置关系图形表示符号表示公共点直线在平面内aα无数个10直线与平面平行a∥α__个直线与平面斜交a∩α=A__个直线不在平面内直线与平面相交直线与平面垂直a⊥α__个01111(2)空间中平面与平面的位置关系位置关系图形表示符号表示公共点两平面平行α∥β__个两平面相交α∩β=l____个0无数124.等角定理空间中,如果两个角的__________________,那么这两个角相等或互补.两边分别对应平行13[常用结论]唯一性定理(1)过直线外一点有且只有一条直线与已知直线平行.(2)过直线外一点有且只有一个平面与已知直线垂直.(3)过平面外一点有且只有一个平面与已知平面平行.(4)过平面外一点有且只有一条直线与已知平面垂直.14[答案](1)×(2)√(3)×(4)×一、思考辨析(正确的打“√”,错误的打“×”)(1)两个平面α,β有一个公共点A,就说α,β相交于过A点的任意一条直线.()(2)两两相交的三条直线最多可以确定三个平面.()(3)如果两个平面有三个公共点,则这两个平面重合.()(4)若直线a不平行于平面α,且aα,则α内的所有直线与a异面.()15C[由已知得直线c与b可能为异面直线也可能为相交直线,但不可能为平行直线,若b∥c,则a∥b,与已知a,b为异面直线相矛盾.]二、教材改编1.已知a,b是异面直线,直线c平行于直线a,那么c与b()A.一定是异面直线B.一定是相交直线C.不可能是平行直线D.不可能是相交直线162.如图所示,在正方体ABCDA1B1C1D1中,E,F分别是AB,AD的中点,则异面直线B1C与EF所成角的大小为()A.30°B.45°C.60°D.90°17C[连接B1D1,D1C(图略),则B1D1∥EF,故∠D1B1C为所求的角,又B1D1=B1C=D1C,∴∠D1B1C=60°.]183.下列命题正确的是()A.两个平面如果有公共点,那么一定相交B.两个平面的公共点一定共线C.两个平面有3个公共点一定重合D.过空间任意三点,一定有一个平面19D[如果两个平面重合,则排除A,B两项;两个平面相交,则有一条交线,交线上任取三个点都是两个平面的公共点,故排除C项;而D项中的三点不论共线还是不共线,则一定能找到一个平面过这三个点.]204.如图,在三棱锥ABCD中,E,F,G,H分别是棱AB,BC,CD,DA的中点,则(1)当AC,BD满足条件________时,四边形EFGH为菱形;(2)当AC,BD满足条件________时,四边形EFGH为正方形.21(1)AC=BD(2)AC=BD且AC⊥BD[(1)∵四边形EFGH为菱形,∴EF=EH,∴AC=BD.(2)∵四边形EFGH为正方形,∴EF=EH且EF⊥EH,∵EF∥AC,EH∥BD,且EF=12AC,EH=12BD,∴AC=BD且AC⊥BD.]22课堂考点探究23考点1平面的基本性质及应用共面、共线、共点问题的证明(1)证明共面的方法:①先确定一个平面,然后再证其余的线(或点)在这个平面内;②证两平面重合.(2)证明共线的方法:①先由两点确定一条直线,再证其他各点都在这条直线上;②直接证明这些点都在同一条特定直线上.(3)证明线共点问题的常用方法是:先证其中两条直线交于一点,再证其他直线经过该点.24如图所示,正方体ABCDA1B1C1D1中,E,F分别是AB和AA1的中点.求证:(1)E,C,D1,F四点共面;(2)CE,D1F,DA三线共点.[证明](1)如图,连接EF,CD1,A1B.∵E,F分别是AB,AA1的中点,∴EF∥BA1.又∵A1B∥D1C,∴EF∥CD1,∴E,C,D1,F四点共面.25(2)∵EF∥CD1,EFCD1,∴CE与D1F必相交,设交点为P,则由P∈直线CE,CE平面ABCD,得P∈平面ABCD.同理P∈平面ADD1A1.又平面ABCD∩平面ADD1A1=DA,∴P∈直线DA,∴CE,D1F,DA三线共点.26本例第(1)问的证明应用了公理2的推论,采用线线共面,则线上的点必共面的思想;本例第(2)问的证明应用了公理3,采用先证明CE与D1F相交,再证明交点在直线DA上.271.(2019·衡水中学模拟)有下列四个命题:①空间四点共面,则其中必有三点共线;②空间四点不共面,则其中任意三点不共线;③空间四点中有三点共线,则此四点共面;④空间四点中任意三点不共线,则此四点不共面.其中真命题的所有序号有________.28②③[①中,对于平面四边形来说不成立,故①是假命题;②中,若四点中有三点共线,则根据“直线与直线外一点可以确定一个平面”知四点共面,与四点不共面矛盾,故②是真命题;由②的分析可知③是真命题;④中,平面四边形的四个顶点中任意三点不共线,但四点共面,故④是假命题.]292.如图所示,空间四边形ABCD中,E,F分别是AB,AD的中点,G,H分别在BC,CD上,且BG∶GC=DH∶HC=1∶2.(1)求证:E,F,G,H四点共面;(2)设EG与FH交于点P,求证:P,A,C三点共线.30[证明](1)因为E,F分别为AB,AD的中点,所以EF∥BD.在△BCD中,BGGC=DHHC=12,所以GH∥BD,所以EF∥GH.所以E,F,G,H四点共面.31(2)因为EG∩FH=P,P∈EG,EG平面ABC,所以P∈平面ABC.同理P∈平面ADC.所以P为平面ABC与平面ADC的公共点.又平面ABC∩平面ADC=AC,所以P∈AC,所以P,A,C三点共线.32考点2判断空间两直线的位置关系空间中两直线位置关系的判定方法331.若直线l1和l2是异面直线,l1在平面α内,l2在平面β内,l是平面α与平面β的交线,则下列命题正确的是()A.l与l1,l2都不相交B.l与l1,l2都相交C.l至多与l1,l2中的一条相交D.l至少与l1,l2中的一条相交34D[法一:(反证法)由于l与直线l1,l2分别共面,故直线l与l1,l2要么都不相交,要么至少与l1,l2中的一条相交.若l∥l1,l∥l2,则l1∥l2,这与l1,l2是异面直线矛盾.故l至少与l1,l2中的一条相交.35法二:(模型法)如图(1),l1与l2是异面直线,l1与l平行,l2与l相交,故A,B不正确;如图(2),l1与l2是异面直线,l1,l2都与l相交,故C不正确.]图(1)图(2)362.(2019·全国卷Ⅲ)如图,点N为正方形ABCD的中心,△ECD为正三角形,平面ECD⊥平面ABCD,M是线段ED的中点,则()A.BM=EN,且直线BM、EN是相交直线B.BM≠EN,且直线BM,EN是相交直线C.BM=EN,且直线BM、EN是异面直线D.BM≠EN,且直线BM,EN是异面直线37B[如图所示,作EO⊥CD于O,连接ON,过M作MF⊥OD于F.连接BF,∵平面CDE⊥平面ABCD,EO⊥CD,EO平面CDE,∴EO⊥平面ABCD,MF⊥平面ABCD,∴△MFB与△EON均为直角三角形.设正方形边长为2,易知EO=3,ON=1,EN=2,38MF=32,BF=52,∴BM=7.∴BM≠EN.连接BD,BE,∵点N是正方形ABCD的中点,∴点N在BD上,且BN=DN.又∵M为ED的中点,∴BM,EN为△DBE的中线,∴BM,EN必相交.故选B.]393.在下列四个图中,G,N,M,H分别是正三棱柱的顶点或所在棱的中点,则表示直线GH,MN是异面直线的图形有________.(填序号)①②③④40②④[图①中,直线GH∥MN;图②中,G,H,N三点共面,但M∉平面GHN,因此直线GH与MN异面;图③中,连接MG,GM∥HN,因此GH与MN共面;图④中,G,M,N共面,但H∉平面GMN,因此GH与MN异面.所以在图②④中,GH与MN异面.]41在直接判断不好处理的情况下,反证法、模型法(如构造几何体:正方体、空间四边形等)和特例排除法等是解决此类问题的三种常用便捷方法.42考点3异面直线所成的角1.平移法求异面直线所成角的一般步骤(1)作角——用平移法找(或作)出符合题意的角.(2)求角——转化为求一个三角形的内角,通过解三角形,求出角的大小.提醒:异面直线所成的角θ∈0,π2.432.坐标法求异面直线所成的角:当题设中含有两两垂直的三边关系时,常采用坐标法.提醒:如果求出的角是锐角或直角,则它就是要求的角;如果求出的角是钝角,则它的补角才是要求的角.44(1)[一题多解](2018·全国卷Ⅱ)在长方体ABCDA1B1C1D1中,AB=BC=1,AA1=3,则异面直线AD1与DB1所成角的余弦值为()A.15B.56C.55D.2245(2)如图所示,A是△BCD所在平面外的一点,E,F分别是BC,AD的中点.①求证:直线EF与BD是异面直线;②若AC⊥BD,AC=BD,求EF与BD所成的角.46(1)C[法一:(平移法)如图,连接BD1,交DB1于O,取AB的中点M,连接DM,OM.易知O为BD1的中点,所以AD1∥OM,则∠MOD为异面直线AD1与DB1所成角.因为在长方体ABCDA1B1C1D1中,AB=BC=1,AA1=3,AD1=AD2+DD21=2,DM=AD2+12AB2=52,47DB1=AB2+AD2+DD21=5,所以OM=12AD1=1,OD=12DB1=52,于是在△DMO中,由余弦定理,得cos∠MOD=12+522-5222×1×52=55,即异面直线AD1与DB1所成角的余弦值为55.故选C.48法二:(坐标法)以D为坐标原点,DA,DC,DD1所在直线分别为x轴,y轴,z轴建立空间直角坐标系,如图所示.由条件可知D(0,0,0),A(1,0,0),D1(0,0,3),B1(1,1,3),所以AD1→=(-1,0,3),DB1→=(1,1,3),则由向量夹角公式,得cos〈AD1→,DB1→〉=AD1→·DB1→|AD1→|·|DB1→|=225=55,即异面直线AD1与DB1所成角的余弦值为55,故选C.49法三:(补体法)如图,在长方体ABCDA1B1C1D1的一侧补上一个相同的长方体A′B′BAA1′B1′B1A1.连接B1B′,由长方体性质可知,B1B′∥AD1,所以∠DB1B′为异面直线AD1与DB1所成的角或其补角.连接DB′,由题意,得DB′=12+1+1