2021高考数学一轮复习 第2章 函数 第7节 对数与对数函数课件 文 北师大版

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

第二章函数第七节对数与对数函数2[最新考纲]1.理解对数的概念及其运算性质,知道用换底公式将一般对数转化成自然对数或常用对数;了解对数在简化运算中的作用.2.理解对数函数的概念及其单调性,掌握对数函数图像通过的特殊点,会画底数为2,10,12的对数函数的图像.3.体会对数函数是一类重要的函数模型.4.了解指数函数y=ax(a>0,且a≠1)与对数函数y=logax(a>0,且a≠1)互为反函数.3课前自主回顾41.对数概念如果ab=N(a>0,且a≠1),那么数b叫做以a为底N的,记作,其中a叫做对数的底数,N叫做真数.alogaN=N性质logaab=b(a>0,且a≠1)换底公式换底公式:logab=logcblogca(a>0,且a≠1;c>0,且c≠1;b>0)对数logaN=b5loga(M·N)=logaMN=运算法则logaMn=(n∈R)a>0,且a≠1,M>0,N>0nlogaMlogaM+logaNlogaM-logaN62.对数函数的定义、图像与性质定义函数y=logax(a>0且a≠1)叫做对数函数a>10<a<1图像7定义域:_______值域:____当x=1时,y=0,即过定点_______当0<x<1时,y<0;当x>1时,y>0当0<x<1时,y>0;当x>1时,y<0性质在(0,+∞)上为在(0,+∞)上为(0,+∞)减函数R(1,0)增函数83.反函数指数函数y=ax(a>0且a≠1)与对数函数(a>0且a≠1)互为反函数,它们的图像关于直线对称.y=logaxy=x9[常用结论]1.换底公式的两个重要结论(1)logab=1logba;(2)logambn=nmlogab.其中a>0且a≠1,b>0且b≠1,m,n∈R且m≠0.102.对数函数的图像与底数大小的比较如图,作直线y=1,则该直线与四个函数图像交点的横坐标为相应的底数,故0<c<d<1<a<b.由此我们可得到以下规律:在第一象限内从左到右底数逐渐增大.11一、思考辨析(正确的打“√”,错误的打“×”)(1)函数y=log2(x+1)是对数函数.()(2)log2x2=2log2x.()(3)函数y=ln1+x1-x与y=ln(1+x)-ln(1-x)的定义域相同.()(4)对数函数y=logax(a>0且a≠1)的图像过定点(1,0),且过点(a,1),1a,-1,函数图像不在第二、三象限.()12[答案](1)×(2)×(3)√(4)√13二、教材改编1.(log29)·(log34)=()A.14B.12C.2D.4D[(log29)·(log34)=lg9lg2×lg4lg3=2lg3lg2×2lg2lg3=4.故选D.]142.已知a=2-13,b=log213,c=log1213,则()A.a>b>cB.a>c>bC.c>b>aD.c>a>bD[因为0<a<1,b<0,c=log1213=log23>1.所以c>a>b.故选D.]153.函数y=log232x-1的定义域是________.12,1[由log23(2x-1)≥0,得0<2x-1≤1.∴12<x≤1.∴函数y=log232x-1的定义域是12,1.]164.函数y=loga(4-x)+1(a>0,且a≠1)的图像恒过点________.(3,1)[当4-x=1即x=3时,y=loga1+1=1.所以函数的图像恒过点(3,1).]17课堂考点探究18⊙考点1对数式的化简与求值对数运算的一般思路(1)拆:首先利用幂的运算把底数或真数进行变形,化成分数指数幂的形式,使幂的底数最简,然后利用对数运算性质化简合并.(2)合:将对数式化为同底数对数的和、差、倍数运算,然后逆用对数的运算性质,转化为同底对数真数的积、商、幂的运算.191.设2a=5b=m,且1a+1b=2,则m等于()A.10B.10C.20D.100A[由已知,得a=log2m,b=log5m,则1a+1b=1log2m+1log5m=logm2+logm5=logm10=2.解得m=10.]202.计算:lg14-lg25÷100-12=________.-20[原式=(lg2-2-lg52)×10012=lg122×52×10=lg10-2×10=-2×10=-20.]213.计算:1-log632+log62·log618log64=________.1[原式=1-2log63+log632+log663·log66×3log64=1-2log63+log632+1-log632log64=21-log632log62=log66-log63log62=log62log62=1.]224.已知log23=a,3b=7,则log37221的值为________.2+a+ab2a+ab[由题意3b=7,所以log37=b.所以log37221=log6384=log284log263=log222×3×7log232×7=2+log23+log23·log372log23+log23·log37=2+a+ab2a+ab.]23对数运算法则是在化为同底的情况下进行的,因此经常会用到换底公式及其推论.在对含有字母的对数式进行化简时,必须保证恒等变形.24⊙考点2对数函数的图像及应用对数函数图像的识别及应用方法(1)在识别函数图像时,要善于利用已知函数的性质、函数图像上的特殊点(与坐标轴的交点、最高点、最低点等)排除不符合要求的选项.(2)一些对数型方程、不等式问题常转化为相应的函数图像问题,利用数形结合法求解.25(1)(2019·浙江高考)在同一直角坐标系中,函数y=1ax,y=logax+12(a>0,且a≠1)的图像可能是()AB26CD27(2)当0<x≤12时,4x<logax,则a的取值范围是()A.0,22B.22,1C.(1,2)D.(2,2)28(1)D(2)B[(1)对于函数y=logax+12,当y=0时,有x+12=1,得x=12,即y=logax+12的图像恒过定点12,0,排除选项A、C;函数y=1ax与y=logax+12在各自定义域上单调性相反,排除选项B,故选D.29(2)构造函数f(x)=4x和g(x)=logax,当a>1时不满足条件,当0<a<1时,画出两个函数在0,12上的图像,可知f12<g12,即2<loga12,则a>22,所以a的取值范围为22,1.]30[母题探究]1.(变条件)若本例(2)变为:若不等式x2-logax<0对x∈0,12恒成立,求实数a的取值范围.31[解]由x2-logax<0得x2<logax,设f1(x)=x2,f2(x)=logax,要使x∈0,12时,不等式x2<logax恒成立,只需f1(x)=x2在0,12上的图像在f2(x)=logax图像的下方即可.当a>1时,显然不成立;32当0<a<1时,如图所示.要使x2<logax在x∈0,12上恒成立,需f112≤f212,所以有122≤loga12,解得a≥116,所以116≤a<1.即实数a的取值范围是[116,1).332.(变条件)若本例(2)变为:当0<x≤14时,x<logax,求实数a的取值范围.34[解]若x<logax在x∈(0,14]成立,则0<a<1,且y=x的图像在y=logax图像的下方,如图所示,由图像知14<loga14,所以0<a<1,a12>14,解得116<a<1.即实数a的取值范围是116,1.351.(2019·合肥模拟)函数y=ln(2-|x|)的大致图像为()AB36CD37A[令f(x)=ln(2-|x|),易知函数f(x)的定义域为{x|-2<x<2},且f(-x)=ln(2-|-x|)=ln(2-|x|)=f(x),所以函数f(x)为偶函数,排除选项C,D.当x=32时,f32=ln12<0,排除选项B,故选A.]382.已知函数y=loga(x+c)(a,c为常数,其中a>0,a≠1)的图像如图,则下列结论成立的是()A.a>1,c>1B.a>1,0<c<1C.0<a<1,c>1D.0<a<1,0<c<139D[由对数函数的图像和性质及函数图像的平移变换知0<a<1,0<c<1.]403.设方程10x=|lg(-x)|的两个根分别为x1,x2,则()A.x1x2<0B.x1x2=0C.x1x2>1D.0<x1x2<141D[作出y=10x与y=|lg(-x)|的大致图像,如图.显然x1<0,x2<0.不妨令x1<x2,则x1<-1<x2<0,所以10x1=lg(-x1),10x2=-lg(-x2),此时10x1<10x2,即lg(-x1)<-lg(-x2),由此得lg(x1x2)<0,所以0<x1x2<1,故选D.]42⊙考点3对数函数的性质及应用解与对数函数有关的函数性质问题的三个关注点(1)定义域,所有问题都必须在定义域内讨论.(2)底数与1的大小关系.(3)复合函数的构成,即它是由哪些基本初等函数复合而成的.43比较大小(1)(2019·天津高考)已知a=log52,b=log0.50.2,c=0.50.2,则a,b,c的大小关系为()A.a<c<bB.a<b<cC.b<c<aD.c<a<b44(2)已知a=log2e,b=ln2,c=log1213,则a,b,c的大小关系为()A.a>b>cB.b>a>cC.c>b>aD.c>a>b45(1)A(2)D[(1)因为a=log52<log55=12,b=log0.50.2>log0.50.5=1,c=0.50.2=1215>12,0.50.2<1,所以a<c<b,故选A.(2)因为a=log2e>1,b=ln2∈(0,1),c=log1213=log23>log2e>1,所以c>a>b,故选D.]46对数值大小比较的主要方法(1)化同底数后利用函数的单调性.(2)化同真数后利用图像比较.(3)借用中间量(0或1等)进行估值比较.47解简单对数不等式(1)若loga34<1(a>0且a≠1),则实数a的取值范围是________.(2)若loga(a2+1)<loga2a<0,则a的取值范围是________.48(1)0,34∪(1,+∞)(2)12,1[(1)当0<a<1时,loga34<logaa=1,∴0<a<34;当a>1时,loga34<logaa=1,∴a>1.∴实数a的取值范围是0,34∪(1,+∞).49(2)由题意得a>0且a≠1,故必有a2+1>2a,又loga(a2+1)<loga2a<0,所以0<a<1,同时2a>1,所以a>12.综上,a∈12,1.]50对于形如logaf(x)>b的不等式,一般转化为logaf(x)>logaab,再根据底数的范围转化为f(x)>ab或0<f(x)<ab.而对于形如logaf(x)>logbg(x)的不等式,一般要转化为同底的不等式来解.51和对数函数有关的复合函数解决与对数函数有关的函数的单调性问题的步骤52已知函数f(x)=log4(ax2+2x+3),若f(1)=1,求f(x)的单调区间.[解]因为f(1)=1,所以log4(a+5)=1,因此a+5=4,a=-1,所以f(x)=log4(-x2+2x+3).由-x2+2x+3>0,得-1<x<3,函数f(x)的定义域为(-1,3).53令g(x)=-x2+2x+3,则g(x)在(-1,1)上单调递增,在(1,3)上单调递减.又y=log4x在(0,+∞)

1 / 58
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功