第六章碰撞与动量守恒定律第二节动量守恒定律碰撞爆炸反冲【基础梳理】提示:不受外力所受外力的矢量和为零m1v′1+m2v′2-Δp2所受合外力为零合力为零远大于守恒不增加守恒增加守恒可能增加【自我诊断】1.判一判(1)两物体相互作用时若系统不受外力,则两物体组成的系统动量守恒.()(2)动量守恒只适用于宏观低速.()(3)当系统动量不守恒时无法应用动量守恒定律解题.()(4)物体相互作用时动量守恒,但机械能不一定守恒.()(5)若在光滑水平面上两球相向运动,碰后均变为静止,则两球碰前的动量大小一定相等.()(6)飞船做圆周运动时,若想变轨通常需要向前或向后喷出气体,该过程中系统动量守恒.()×√×√√√2.做一做(1)(2020·山东寿光模拟)如图所示,一辆小车静止在光滑水平面上,A、B两人分别站在车的两端,当两人同时相向运动时()A.若小车不动,两人速率一定相等B.若小车向左运动,A的动量一定比B的小C.若小车向左运动,A的动量一定比B的大D.若小车向右运动,A的动量一定比B的大提示:选C.两人及小车组成的系统所受合外力为零,系统动量守恒,根据动量守恒定律得mAvA+mBvB+m车v车=0,若小车不动,则mAvA+mBvB=0,由于不知道A、B质量的关系,所以两人速率不一定相等,故A错误;若小车向左运动,则A、B的动量和必须向右,而A向右运动,B向左运动,所以A的动量一定比B的大,故B错误,C正确;若小车向右运动,则A、B的动量和必须向左,而A向右运动,B向左运动,所以A的动量一定比B的小,故D错误.(2)(2020·山东恒台一中高三诊考)如图所示,光滑水平面上,甲、乙两个球分别以大小为v1=1m/s、v2=2m/s的速度做相向运动,碰撞后两球粘在一起以0.5m/s的速度向左运动,则甲、乙两球的质量之比为()A.1∶1B.1∶2C.1∶3D.2∶1提示:选A.设甲、乙两球的质量分别为m1、m2,乙球的速度方向为正方向,根据动量守恒:m2v2-m1v1=(m1+m2)v,即2m2-m1=(m1+m2)×0.5,解得m1∶m2=1∶1,A正确.对动量守恒定律的理解和应用【知识提炼】1.动量守恒的条件(1)理想守恒:系统不受外力或所受外力的矢量和为零,则系统动量守恒.(2)近似守恒:系统受到的外力矢量和不为零,但当内力远大于外力时,系统的动量可近似看成守恒.(3)某一方向上守恒:系统在某个方向上所受外力矢量和为零时,系统在该方向上动量守恒.2.动量守恒定律常用的四种表达形式(1)p=p′:即系统相互作用前的总动量p和相互作用后的总动量p′大小相等,方向相同.(2)Δp=p′-p=0:即系统总动量的增加量为零.(3)Δp1=-Δp2:即相互作用的系统内的两部分物体,其中一部分动量的增加量等于另一部分动量的减少量.(4)m1v1+m2v2=m1v′1+m2v′2,即相互作用前后系统内各物体的动量都在同一直线上时,作用前总动量与作用后总动量相等.3.动量守恒定律的“五性”矢量性动量守恒定律的表达式为矢量方程,解题应选取统一的正方向相对性各物体的速度必须是相对同一参考系的速度(没有特殊说明要选地球这个参考系).如果题设条件中各物体的速度不是相对同一参考系时,必须转换成相对同一参考系的速度同时性动量是一个瞬时量,表达式中的p1、p2…必须是系统中各物体在相互作用前同一时刻的动量,p′1、p′2…必须是系统中各物体在相互作用后同一时刻的动量,不同时刻的动量不能相加系统性研究的对象是相互作用的两个或多个物体组成的系统,而不是其中的一个物体,更不能题中有几个物体就选几个物体普适性动量守恒定律不仅适用于低速宏观物体组成的系统,还适用于接近光速运动的微观粒子组成的系统4.应用动量守恒定律解题的基本步骤【典题例析】如图所示,甲、乙两名宇航员正在离空间站一定距离的地方执行太空维修任务.某时刻甲、乙都以大小为v0=2m/s的速度相向运动,甲、乙和空间站在同一直线上且可视为质点.甲和他的装备总质量为M1=90kg,乙和他的装备总质量为M2=135kg,为了避免直接相撞,乙从自己的装备中取出一质量为m=45kg的物体A推向甲,甲迅速接住A后即不再松开,此后甲、乙两宇航员在空间站外做相对距离不变的同向运动,速度为v1,且安全“飘”向空间站.(设甲、乙距离空间站足够远,本题中的速度均指相对空间站的速度)(1)乙要以多大的速度v(相对于空间站)将物体A推出?(2)设甲与物体A作用时间为t=0.5s,求甲与A的相互作用力F的大小.[解析](1)以甲、乙、A三者组成的系统为研究对象,系统动量守恒,以乙运动的方向为正方向,则有M2v0-M1v0=(M1+M2)v1以乙和A组成的系统为研究对象,由动量守恒得M2v0=(M2-m)v1+mv代入数据联立解得v1=0.4m/s,v=5.2m/s.(2)以甲为研究对象,以甲接住A后运动的方向为正方向,由动量定理得Ft=M1v1-(-M1v0),代入数据解得F=432N.[答案](1)5.2m/s(2)432N【迁移题组】迁移1动量守恒的条件判断1.(多选)(2020·甘肃天水高三期末)如图所示,木块B与水平面间的摩擦不计,子弹A沿水平方向射入木块并在极短时间内相对于木块静止下来,然后木块压缩弹簧至弹簧最短.将子弹射入木块到刚相对于木块静止的过程称为Ⅰ,此后木块压缩弹簧的过程称为Ⅱ,则()A.过程Ⅰ中,子弹、弹簧和木块所组成的系统机械能不守恒,动量也不守恒B.过程Ⅰ中,子弹和木块所组成的系统机械能不守恒,动量守恒C.过程Ⅱ中,子弹、弹簧和木块所组成的系统机械能守恒,动量也守恒D.过程Ⅱ中,子弹、弹簧和木块所组成的系统机械能守恒,动量不守恒解析:选BD.子弹射入木块到刚相对于木块静止的过程,子弹和木块(或子弹、弹簧和木块)组成的系统所受合外力为零,系统动量守恒,但要克服摩擦力做功,产生热量,系统机械能不守恒,A错误,B正确;过程Ⅱ中,子弹、弹簧和木块所组成的系统受到墙壁的作用力,外力之和不为零,则系统动量不守恒,但系统只有弹簧弹力做功,机械能守恒,C错误,D正确.迁移2某一方向上的动量守恒问题2.(2020·福建龙岩高三期末)如图所示,在光滑的水平冰面上放置一个光滑的曲面体,曲面体的右侧与冰面相切,一个坐在冰车上的小孩手扶一球静止在冰面上.已知小孩和冰车的总质量为m1=40kg,球的质量为m2=10kg,曲面体的质量为m3=10kg.某时刻小孩将球以v0=4m/s的水平速度向曲面体推出,推出后,球沿曲面体上升(球不会越过曲面体).求:(1)推出球后,小孩和冰车的速度大小v1;(2)球在曲面体上升的最大高度h.解析:(1)以球、小孩和冰车组成的系统为研究对象,取水平向左为正方向,由动量守恒定律得:m2v0-m1v1=0,解得:小孩和冰车的速度大小v1=1m/s.(2)以球和曲面体组成的系统为研究对象,取水平向左为正方向,由水平方向动量守恒得:m2v0=(m2+m3)v2,解得:球在最大高度处与曲面体的共同速度v2=2m/s;球在曲面体上升的过程,由机械能守恒定律得:12m2v20=12(m2+m3)v22+m2gh解得:球在曲面体上升的最大高度h=0.4m.答案:(1)1m/s(2)0.4m迁移3爆炸、反冲现象中的动量守恒3.(2018·高考全国卷Ⅰ)一质量为m的烟花弹获得动能E后,从地面竖直升空.当烟花弹上升的速度为零时,弹中火药爆炸将烟花弹炸为质量相等的两部分,两部分获得的动能之和也为E,且均沿竖直方向运动.爆炸时间极短,重力加速度大小为g,不计空气阻力和火药的质量.求:(1)烟花弹从地面开始上升到弹中火药爆炸所经过的时间;(2)爆炸后烟花弹向上运动的部分距地面的最大高度.解析:(1)设烟花弹上升的初速度为v0,由题给条件有E=12mv20①设烟花弹从地面开始上升到火药爆炸所用的时间为t,由运动学公式有0-v0=-gt②联立①②式得t=1g2Em.③(2)设爆炸时烟花弹距地面的高度为h1,由机械能守恒定律有E=mgh1④火药爆炸后,烟花弹上、下两部分均沿竖直方向运动,设炸后瞬间其速度分别为v1和v2.由题给条件和动量守恒定律有14mv21+14mv22=E⑤12mv1+12mv2=0⑥由⑥式知,烟花弹两部分的速度方向相反,向上运动部分做竖直上抛运动.设爆炸后烟花弹向上运动部分继续上升的高度为h2,由机械能守恒定律有14mv21=12mgh2⑦联立④⑤⑥⑦式得,烟花弹向上运动部分距地面的最大高度为h=h1+h2=2Emg.答案:见解析1.对反冲运动的三点说明作用原理反冲运动是系统内物体之间的作用力和反作用力产生的效果动量守恒反冲运动中系统不受外力或内力远大于外力,所以反冲运动遵循动量守恒定律机械能增加反冲运动中,由于有其他形式的能转化为机械能,所以系统的总机械能增加2.爆炸现象的三个规律动量守恒由于爆炸是在极短的时间内完成的,爆炸物体间的相互作用力远远大于受到的外力,所以在爆炸过程中,系统的总动量守恒动能增加在爆炸过程中,由于有其他形式的能量(如化学能)转化为动能,所以爆炸后系统的总动能增加位置不变爆炸的时间极短,因而作用过程中,物体产生的位移很小,一般可忽略不计,可以认为爆炸后仍然从爆炸前的位置以新的动量开始运动碰撞现象中规律的分析【知识提炼】1.碰撞遵守的规律(1)动量守恒,即p1+p2=p′1+p′2.(2)动能不增加,即Ek1+Ek2≥E′k1+E′k2或p212m1+p222m2≥p′212m1+p′222m2.(3)速度要符合情景:如果碰前两物体同向运动,则后面的物体速度必大于前面物体的速度,即v后v前,否则无法实现碰撞.碰撞后,原来在前面的物体的速度一定增大,且原来在前面的物体速度大于或等于原来在后面的物体的速度,即v′前≥v′后,否则碰撞没有结束.如果碰前两物体相向运动,则碰后两物体的运动方向不可能都不改变,除非两物体碰撞后速度均为零.2.碰撞模型类型(1)弹性碰撞两球发生弹性碰撞时应满足动量守恒和机械能守恒.以质量为m1、速度为v1的小球与质量为m2的静止小球发生正面弹性碰撞为例,有m1v1=m1v′1+m2v′212m1v21=12m1v′21+12m2v′22解得v′1=(m1-m2)v1m1+m2,v′2=2m1v1m1+m2.结论:①当两球质量相等时,v′1=0,v′2=v1,两球碰撞后交换了速度.②当质量大的球碰质量小的球时,v′10,v′20,碰撞后两球都沿速度v1的方向运动.③当质量小的球碰质量大的球时,v′10,v′20,碰撞后质量小的球被反弹回来.④撞前相对速度与撞后相对速度大小相等.(2)完全非弹性碰撞①撞后共速.②有动能损失,且损失最多.【典题例析】如图所示,在足够长的光滑水平面上,物体A、B、C位于同一直线上,A位于B、C之间.A的质量为m,B、C的质量都为M,三者均处于静止状态.现使A以某一速度向右运动,求m和M之间应满足什么条件,才能使A只与B、C各发生一次碰撞.设物体间的碰撞都是弹性的.[解析]A向右运动与C发生第一次碰撞,碰撞过程中,系统的动量守恒、机械能守恒.设速度方向向右为正,开始时A的速度为v0,第一次碰撞后C的速度为vC1,A的速度为vA1.由动量守恒定律和机械能守恒定律得mv0=mvA1+MvC1①12mv20=12mv2A1+12Mv2C1②联立①②式得vA1=m-Mm+Mv0③vC1=2mm+Mv0④如果mM,第一次碰撞后,A与C速度同向,且A的速度小于C的速度,不可能与B发生碰撞;如果m=M,第一次碰撞后,A停止,C以A碰前的速度向右运动,A不可能与B发生碰撞;所以只需考虑mM的情况.第一次碰撞后,A反向运动与B发生碰撞.设与B发生碰撞后,A的速度为vA2,B的速度为vB1,同样有vA2=m-Mm+MvA1=m-Mm+M2v0⑤根据题意,要求A只与B、C各发生一次碰撞,应有vA2≤vC1⑥联立④⑤⑥式得m2+4mM-M2≥0解得m≥(5-2)M另一解m≤-(5+2)M舍去.所以,m和M应满足的条件为(5-2)M≤mM.[答