第一章集合、常用逻辑用语与不等式2全国卷五年考情图解说明:“Ⅰ1”指全国卷Ⅰ第1题,“Ⅱ1”指全国卷Ⅱ第1题,“Ⅲ1”指全国卷Ⅲ第1题.3高考命题规律把握1.考查形式本章在高考中一般考查1或2个小题,主要以选择题为主,很少以填空题的形式出现.2.考查内容从考查内容来看,集合主要有三方面考查:一是集合中元素的特性;二是集合间的关系;三是集合的运算,包含集合的交、并、补集运算.常用逻辑用语主要从两个方面考查:充分必要条件的判断及全称量词与存在量词;不等式的解法常与集合运算交汇,不等式的性质常以比较大小的方式命题.基本不等式一般不单独考查.43.备考策略(1)熟练掌握解决以下问题的方法和规律①集合的交、并、补集运算问题;②充分条件、必要条件的判断问题;③含有一个量词的命题的否定问题;④一元二次不等式的解法及基本不等式的应用.(2)重视数形结合、分类讨论、转化与化归思想的应用.5第一节集合6[最新考纲]1.了解集合的含义,体会元素与集合的属于关系;能用自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题.2.理解集合之间包含与相等的含义,能识别给定集合的子集;在具体情境中,了解全集与空集的含义.3.(1)理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集.(2)理解在给定集合中一个子集的补集的含义,会求给定子集的补集.(3)能使用Venn图表达集合间的基本关系及集合的基本运算.7课前自主回顾81.集合与元素(1)集合中元素的三个特性:、、.(2)元素与集合的关系是或,用符号或表示.(3)集合的三种表示方法:、、Venn图法.确定性互异性无序性属于不属于列举法描述法∉∈9(4)常见数集的记法集合自然数集正整数集整数集有理数集实数集符号NN*(或N+)ZQR102.集合的基本关系关系自然语言符号语言Venn图子集集合A的任意一个元素都是集合B的元素(即若x∈A,则x∈B)._____________真子集如果A⊆B且A≠B_____________A⊆B或(B⊇A)AB或BA11集合相等如果两个集合所含的元素完全相同(即A中的元素都是B中的元素,B中的元素也都是A中的元素)________A=B123.集合的基本运算运算自然语言符号语言Venn图交集由属于集合A且属于集合B的所有元素组成的集合A∩B={x|x∈A且x∈B}并集由所有属于集合A或属于集合B的元素组成的集合A∪B={x|x∈A或x∈B}13补集设A⊆U,由U中不属于A的所有元素组成的集合称为U的子集A的补集∁UA={x|x∈U且x∉A}14[常用结论]1.非常规性表示常用数集{x|x=2(n-1),n∈Z}为偶数集,{x|x=4n±1,n∈Z}为奇数集等.2.集合子集的个数对于有限集合A,其元素个数为n,则集合A的子集个数为2n,真子集个数为2n-1,非空真子集个数为2n-2.153.集合的运算性质(1)并集的性质:A∪∅=A;A∪A=A;A∪B=B∪A;A∪B=A⇔B⊆A.(2)交集的性质:A∩∅=∅;A∩A=A;A∩B=B∩A;A∩B=A⇔A⊆B.(3)补集的性质:A∪(∁UA)=U;A∩(∁UA)=∅;∁U(∁UA)=A;∁U(A∩B)=(∁UA)∪(∁UB);∁U(A∪B)=(∁UA)∩(∁UB).16一、思考辨析(正确的打“√”,错误的打“×”)(1)任何一个集合都至少有两个子集.()(2){x|y=x2}={y|y=x2}={(x,y)|y=x2}.()(3)若{x2,1}={0,1},则x=0,1.()(4)直线y=x+3与y=-2x+6的交点组成的集合是{1,4}.()[答案](1)×(2)×(3)×(4)×17二、教材改编1.若集合A={x∈N|x≤22},a=2,则下列结论正确的是()A.{a}⊆AB.a⊆AC.{a}∈AD.a∉AD[由题意知A={0,1,2},由a=2,知a∉A.]182.已知集合M={0,1,2,3,4},N={1,3,5},则集合M∪N的子集的个数为________.64[∵M={0,1,2,3,4},N={1,3,5},∴M∪N={0,1,2,3,4,5},∴M∪N的子集有26=64个.]193.已知U={α|0°<α<180°},A={x|x是锐角},B={x|x是钝角},则∁U(A∪B)=________.[答案]{x|x是直角}204.方程组x+y=1,2x-y=1的解集为________.23,13[由x+y=1,2x-y=1,得x=23,y=13,故方程组的解集为23,13.]215.已知集合A={x|x2-x-6<0},集合B={x|x-1<0},则A∩B=________,A∪B=________.(-2,1)(-∞,3)[∵A={x|-2<x<3},B={x|x-1<0}={x|x<1},∴A∩B={x|-2<x<1},A∪B={x|x<3}.]22课堂考点探究23考点1集合的概念与集合中的元素有关的问题的求解思路(1)确定集合的元素是什么,即集合是数集还是点集.(2)看清元素的限制条件.(3)根据限制条件求参数的值或确定集合中元素的个数.241.(2018·全国卷Ⅱ)已知集合A={(x,y)|x2+y2≤3,x∈Z,y∈Z},则A中元素的个数为()A.9B.8C.5D.425A[由x2+y2≤3知,-3≤x≤3,-3≤y≤3.又x∈Z,y∈Z,所以x∈{-1,0,1},y∈{-1,0,1},所以A中元素的个数为C13C13=9,故选A.]262.已知集合A={m+2,2m2+m},若3∈A,则m的值为________.27-32[由题意得m+2=3或2m2+m=3,则m=1或m=-32.当m=1时,m+2=3且2m2+m=3,根据集合中元素的互异性可知不满足题意;当m=-32时,m+2=12,而2m2+m=3,符合题意,故m=-32.]283.若集合A={x∈R|ax2-3x+2=0}中只有一个元素,则a=________.0或98[当a=0时,显然成立;当a≠0时,Δ=(-3)2-8a=0,即a=98.]294.已知a,b∈R,若a,ba,1={a2,a+b,0},则a2020+b2020=________.1[由已知得a≠0,则ba=0,所以b=0,于是a2=1,即a=1或a=-1,又根据集合中元素的互异性可知a=1应舍去,因此a=-1,故a2020+b2020=(-1)2020+02020=1.]30(1)求解此类问题时,要特别注意集合中元素的互异性,如T2,T4.(2)常用分类讨论的思想方法求解集合问题,如T3.31考点2集合的基本关系判断两集合关系的方法(1)列举法:用列举法表示集合,再从元素中寻求关系.(2)化简集合法:用描述法表示的集合,若代表元素的表达式比较复杂,往往需化简表达式,再寻求两个集合的关系.32(1)(2019·沈阳模拟)已知集合A={x|y=1-x2,x∈R},B={x|x=m2,m∈A},则()A.ABB.BAC.A⊆BD.B=A33(2)已知集合A={x|x2-3x+2=0,x∈R},B={x|0<x<5,x∈N},则满足条件A⊆C⊆B的集合C的个数为()A.1B.2C.3D.4(3)已知集合A={x|-2≤x≤5},B={x|m+1≤x≤2m-1},若B⊆A,则实数m的取值范围为________.34(1)B(2)D(3)(-∞,3][(1)由题意知A={x|y=1-x2,x∈R},所以A={x|-1≤x≤1}.所以B={x|x=m2,m∈A}={x|0≤x≤1},所以BA,故选B.(2)因为A={1,2},B={1,2,3,4},A⊆C⊆B,则集合C可以为:{1,2},{1,2,3},{1,2,4},{1,2,3,4}共4个.35(3)因为B⊆A,所以①若B=∅,则2m-1<m+1,此时m<2.②若B≠∅,则2m-1≥m+1,m+1≥-2,2m-1≤5.解得2≤m≤3.由①②可得,符合题意的实数m的取值范围为(-∞,3].]36[母题探究]1.(变问法)本例(3)中,若BA,求m的取值范围.[解]因为BA,①若B=∅,成立,此时m<2.②若B≠∅,则2m-1≥m+1,m+1≥-2,2m-1≤5,且边界点不能同时取得,解得2≤m≤3.综合①②,m的取值范围为(-∞,3].372.(变问法)本例(3)中,若A⊆B,求m的取值范围.[解]若A⊆B,则m+1≤-2,2m-1≥5,即m≤-3,m≥3.所以m的取值范围为∅.383.(变条件)若将本例(3)中的集合A改为A={x|x<-2或x>5},试求m的取值范围.[解]因为B⊆A,所以①当B=∅时,2m-1<m+1,即m<2,符合题意.②当B≠∅时,m+1≤2m-1,m+1>5或m+1≤2m-1,2m-1<-2,解得m≥2,m>4或m≥2,m<-12,即m>4.39(1)已知两个集合间的关系求参数时,关键是将条件转化为元素或区间端点间的关系,进而转化为参数所满足的关系,常用数轴、Venn图等来直观解决这类问题.(2)空集是任何集合的子集,当题目条件中有B⊆A时,应分B=∅和B≠∅两种情况讨论.401.设M为非空的数集,M⊆{1,2,3},且M中至少含有一个奇数元素,则这样的集合M共有()A.6个B.5个C.4个D.3个A[由题意知,M={1},{3},{1,2},{1,3},{2,3},{1,2,3},共6个.]412.若集合A={1,2},B={x|x2+mx+1=0,x∈R},且B⊆A,则实数m的取值范围为________.42[-2,2)[①若B=∅,则Δ=m2-4<0,解得-2<m<2,符合题意;②若1∈B,则12+m+1=0,解得m=-2,此时B={1},符合题意;③若2∈B,则22+2m+1=0,解得m=-52,此时B=2,12,不合题意.综上所述,实数m的取值范围为[-2,2).]43考点3集合的基本运算集合运算三步骤44集合的运算(1)(2019·全国卷Ⅰ)已知集合M={x|-4<x<2},N={x|x2-x-6<0},则M∩N=()A.{x|-4<x<3}B.{x|-4<x<-2}C.{x|-2<x<2}D.{x|2<x<3}45(2)(2019·浙江高考)已知全集U={-1,0,1,2,3},集合A={0,1,2},B={-1,0,1},则(∁UA)∩B=()A.{-1}B.{0,1}C.{-1,2,3}D.{-1,0,1,3}46(3)设集合A={y|y=2x,x∈R},B={x|x2-1<0},则A∪B等于()A.(-1,1)B.(0,1)C.(-1,+∞)D.(0,+∞)47(1)C(2)A(3)C[(1)∵N={x|x2-x-6<0}={x|-2<x<3},M={x|-4<x<2},∴M∩N={x|-2<x<2},故选C.(2)∵∁UA={-1,3},∴(∁UA)∩B={-1},故选A.(3)∵A={y|y>0},B={x|-1<x<1},∴A∪B=(-1,+∞),故选C.]48[逆向问题]已知A,B均为集合U={1,3,5,7,9}的子集,且A∩B={3},(∁UB)∩A={9},则A=()A.{1,3}B.{3,7,9}C.{3,5,9}D.{3,9}49D[法一:(直接法)因为A∩B={3},所以3∈A,又(∁UB)∩A={9},所以9∈A.若5∈A,则5∉B(否则5∈A∩B),从而5∈∁UB,则(∁UB)∩A={5,9},与题中条件矛盾,故5∉A.同理,1∉A,7∉A,故A={3,9}.50法二:(Venn图)如图所示.]51集合运算的常用方法(1)若集合中的元素是离散的,常用Venn图求解.(2)若集合中的元素是连续的实数,则用数轴表示,此时要注意端点的情况.52利用集合的运算求参数(1)集合A={0,2,a},B={1,a2},若A∪B={0,1,2,4,16}