2021版高考数学一轮复习 第二章 函数 2.5 幂函数与二次函数课件 苏教版

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

第二章函数第五节幂函数与二次函数2[最新考纲]1.(1)了解幂函数的概念;(2)结合函数y=x,y=x2,y=x3,y=x12,y=1x的图象,了解它们的变化情况.2.理解二次函数的图象和性质,能用二次函数、方程、不等式之间的关系解决简单问题.3课前自主回顾41.幂函数(1)幂函数的定义一般地,形如的函数称为幂函数,其中x是自变量,α是常数.y=xα(α∈R)5(2)常见的五种幂函数的图象和性质比较函数y=xy=x2y=x3y=x12y=x-1图象性质定义域RRR__________________{x|x≥0}{x|x≠0}6值域R__________R_____________________性质奇偶性___函数___函数___函数___________函数___函数{y|y≥0}{y|y≥0}{y|y≠0}奇偶奇非奇非偶奇7单调性在R上单调递增在_________上单调递减;在_________上单调递增在R上单调递增在_________上单调递增在_______和_______上单调递减性质公共点_____(0,+∞)(1,1)(-∞,0](0,+∞)[0,+∞)(-∞,0)82.二次函数的图象和性质解析式f(x)=ax2+bx+c(a>0)f(x)=ax2+bx+c(a<0)图象定义域____RR9值域单调性在x∈上单调递减;在x∈上单调递增在x∈上单调递增;在x∈-b2a,+∞上单调递减对称性函数的图象关于直线x=-b2a对称-∞,4ac-b24a-∞,-b2a-b2a,+∞10[常用结论]1.幂函数y=xα性质研究的方法(1)先确定幂函数的定义域(分数指数幂先转化为根式),若对称,判定其奇偶性;(2)研究幂函数在第一象限的图象与性质:①当α>0时,函数y=xα恒经过(0,0),(1,1);在[0,+∞)上为增函数;②当α<0时,函数恒经过(1,1);在(0,+∞)上为减函数;11(3)结合函数的奇偶性研究其它象限的图象.(4)当x∈(0,1)时,α越大,函数值越小;当x∈(1,+∞)时,α越大,函数值越大.2.二次函数解析式的三种形式(1)一般式:f(x)=ax2+bx+c(a≠0);(2)顶点式:f(x)=a(x-m)2+n(a≠0);(3)零点式:f(x)=a(x-x1)(x-x2)(a≠0).123.一元二次不等式恒成立的条件(1)ax2+bx+c>0(a≠0)恒成立的充要条件是“a>0且Δ<0”;(2)ax2+bx+c<0(a≠0)恒成立的充要条件是“a<0且Δ<0”.13一、思考辨析(正确的打“√”,错误的打“×”)(1)函数y=2x12是幂函数.()(2)如果幂函数的图象与坐标轴相交,则交点一定是原点.()(3)当α<0时,幂函数y=xα是定义域上的减函数.()14(4)二次函数y=ax2+bx+c,x∈[a,b]的最值一定是4ac-b24a.()(5)二次函数y=ax2+bx+c,x∈R不可能是偶函数.()(6)在y=ax2+bx+c(a≠0)中,a决定了图象的开口方向和在同一直角坐标系中的开口大小.()[答案](1)×(2)√(3)×(4)×(5)×(6)√15二、教材改编1.已知幂函数f(x)=k·xα的图象过点12,22,则k+α=()A.12B.1C.32D.2C[因为函数f(x)=k·xα是幂函数,所以k=1,又函数f(x)的图象过点12,22,所以12a=22,解得α=12,则k+α=32.]162.如图是①y=xa;②y=xb;③y=xc在第一象限的图象,则a,b,c的大小关系为()A.c<b<aB.a<b<cC.b<c<aD.a<c<bD[根据幂函数的性质,可知选D.]173.已知函数f(x)=x2+4ax在区间(-∞,6)内单调递减,则a的取值范围是()A.a≥3B.a≤3C.a<-3D.a≤-3D[函数f(x)=x2+4ax的图象是开口向上的抛物线,其对称轴是x=-2a,由函数在区间(-∞,6)内单调递减可知,区间(-∞,6)应在直线x=-2a的左侧,所以-2a≥6,解得a≤-3,故选D.]184.函数g(x)=x2-2x(x∈[0,3])的值域是________.[-1,3][∵g(x)=x2-2x=(x-1)2-1,x∈[0,3],∴当x=1时,g(x)min=g(1)=-1,又g(0)=0,g(3)=9-6=3,∴g(x)max=3,即g(x)的值域为[-1,3].]19课堂考点探究20考点1幂函数的图象及性质幂函数的性质与图象特征的关系(1)幂函数的形式是y=xα(α∈R),其中只有一个参数α,因此只需一个条件即可确定其解析式.(2)判断幂函数y=xα(α∈R)的奇偶性时,当α是分数时,一般将其先化为根式,再判断.21(3)若幂函数y=xα在(0,+∞)上单调递增,则α>0,若在(0,+∞)上单调递减,则α<0.221.幂函数y=f(x)的图象经过点(3,3),则f(x)是()A.偶函数,且在(0,+∞)上是增函数B.偶函数,且在(0,+∞)上是减函数C.奇函数,且在(0,+∞)上是减函数D.非奇非偶函数,且在(0,+∞)上是增函数D[设幂函数f(x)=xα,则f(3)=3α=3,解得α=12,则f(x)=x12=x,是非奇非偶函数,且在(0,+∞)上是增函数.]232.当x∈(0,+∞)时,幂函数y=(m2+m-1)x-5m-3为减函数,则实数m的值为()A.-2B.1C.1或-2D.m≠-1±5224B[因为函数y=(m2+m-1)x-5m-3既是幂函数又是(0,+∞)上的减函数,所以m2+m-1=1,-5m-3<0,解得m=1.]253.若a=1223,b=1523,c=1213,则a,b,c的大小关系是()A.a<b<cB.c<a<bC.b<c<aD.b<a<c26D[因为y=x23在第一象限内是增函数,所以a=1223>b=1523,因为y=12x是减函数,所以a=1223<c=1213,所以b<a<c.]274.若(a+1)12<(3-2a)12,则实数a的取值范围是________.-1,23[易知函数y=x12的定义域为[0,+∞),在定义域内为增函数,所以a+1≥0,3-2a≥0,a+1<3-2a,解得-1≤a<23.]28在比较幂值的大小时,必须结合幂值的特点,选择适当的函数,借助其单调性进行比较,如T3.29考点2求二次函数的解析式求二次函数解析式的策略30[一题多解]已知二次函数f(x)满足f(2)=-1,f(-1)=-1,且f(x)的最大值是8,试确定此二次函数的解析式.31[解]法一:(利用二次函数的一般式)设f(x)=ax2+bx+c(a≠0).由题意得4a+2b+c=-1,a-b+c=-1,4ac-b24a=8,解得a=-4,b=4,c=7.故所求二次函数为f(x)=-4x2+4x+7.32法二:(利用二次函数的顶点式)设f(x)=a(x-m)2+n.∵f(2)=f(-1),∴抛物线对称轴为x=2+-12=12.∴m=12,又根据题意函数有最大值8,∴n=8,∴y=f(x)=ax-122+8.33∵f(2)=-1,∴a2-122+8=-1,解得a=-4,∴f(x)=-4x-122+8=-4x2+4x+7.34法三:(利用零点式)由已知f(x)+1=0的两根为x1=2,x2=-1,故可设f(x)+1=a(x-2)(x+1),即f(x)=ax2-ax-2a-1.又函数有最大值ymax=8,即4a-2a-1-a24a=8.解得a=-4或a=0(舍去),故所求函数解析式为f(x)=-4x2+4x+7.35求二次函数的解析式常利用待定系数法,但由于条件不同,则所选用的解析式不同,其方法也不同.1.已知二次函数f(x)的图象的顶点坐标是(-2,-1),且图象经过点(1,0),则函数的解析式为f(x)=________.3619x2+49x-59[法一:(一般式)设所求解析式为f(x)=ax2+bx+c(a≠0).由已知得-b2a=-2,4ac-b24a=-1,a+b+c=0,解得a=19,b=49,c=-59,所以所求解析式为f(x)=19x2+49x-59.37法二:(顶点式)设所求解析式为f(x)=a(x-h)2+k.由已知得f(x)=a(x+2)2-1,将点(1,0)代入,得a=19,所以f(x)=19(x+2)2-1,即f(x)=19x2+49x-59.]382.已知二次函数f(x)的图象经过点(4,3),它在x轴上截得的线段长为2,并且对任意x∈R,都有f(2-x)=f(2+x),则函数的解析式f(x)=________.39x2-4x+3[∵f(2-x)=f(2+x)对x∈R恒成立,∴f(x)的对称轴为x=2.又∵f(x)的图象被x轴截得的线段长为2,∴f(x)=0的两根为1和3.设f(x)的解析式为f(x)=a(x-1)(x-3)(a≠0).又∵f(x)的图象经过点(4,3),∴3a=3,a=1.40∴所求f(x)的解析式为f(x)=(x-1)(x-3),即f(x)=x2-4x+3.]41考点3二次函数的图象与性质解决二次函数图象与性质问题时应注意2点(1)抛物线的开口,对称轴位置,定义区间三者相互制约,要注意分类讨论.(2)要注意数形结合思想的应用,尤其是给定区间上的二次函数最值问题,先“定性”(作草图),再“定量”(看图求解).42二次函数的图象已知abc>0,则二次函数f(x)=ax2+bx+c的图象可能是()AB43CD44D[A项,因为a<0,-b2a<0,所以b<0.又因为abc>0,所以c>0,而f(0)=c<0,故A错.B项,因为a<0,-b2a>0,所以b>0.又因为abc>0,所以c<0,而f(0)=c>0,故B错.C项,因为a>0,-b2a<0,所以b>0.又因为abc>0,所以c>0,而f(0)=c<0,故C错.D项,因为a>0,-b2a>0,所以b<0,因为abc>0,所以c<0,而f(0)=c<0,故选D.]45识别二次函数图象应学会“三看”46二次函数的单调性函数f(x)=ax2+(a-3)x+1在区间[-1,+∞)上是递减的,则实数a的取值范围是()A.[-3,0)B.(-∞,-3]C.[-2,0]D.[-3,0]47D[当a=0时,f(x)=-3x+1在[-1,+∞)上递减,满足题意.当a≠0时,f(x)的对称轴为x=3-a2a,由f(x)在[-1,+∞)上递减知a<0,3-a2a≤-1,解得-3≤a<0.综上,a的取值范围为[-3,0].]48[母题探究]若函数f(x)=ax2+(a-3)x+1的单调减区间是[-1,+∞),则a=________.-3[由题意知f(x)必为二次函数且a<0,又3-a2a=-1,∴a=-3.]49二次函数单调性问题的求解策略(1)对于二次函数的单调性,关键是开口方向与对称轴的位置,若开口方向或对称轴的位置不确定,则需要分类讨论求解.(2)利用二次函数的单调性比较大小,一定要将待比较的两数通过二次函数的对称性转化到同一单调区间上比较.50二次函数的最值问题设函数f(x)=x2-2x+2,x∈[t,t+1],t∈R,求函数f(x)的最小值.51[解]f(x)=x2-2x+2=(x-1)2+1,x∈[t,t+1],t∈R,函数图象的对称轴为x=1.当t+1<1,即t<0时,函数图象如图(1)所示,函数f(x)在区间[t,t+1]上为减函数,所以最小值为f(t+1)=t2+1;当t≤1≤t+1,即0≤t≤1时,函数图象如图(2)所示,在对称轴x=1处取得最小值,最小值为f

1 / 68
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功