2021版高考数学一轮复习 第八章 立体几何 第6讲 平行、垂直的综合问题课件 文 新人教A版

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

数学第八章立体几何第6讲平行、垂直的综合问题01核心考点深度剖析02高效演练分层突破空间中的证明与计算问题(师生共研)如图,在四棱锥P­ABCD中,AB∥CD,且∠BAP=∠CDP=90°.(1)证明:平面PAB⊥平面PAD;(2)若PA=PD=AB=DC,∠APD=90°,且四棱锥P­ABCD的体积为83,求该四棱锥的侧面积.【解】(1)证明:由已知∠BAP=∠CDP=90°,得AB⊥AP,CD⊥PD.由于AB∥CD,故AB⊥PD,从而AB⊥平面PAD.又AB⊂平面PAB,所以平面PAB⊥平面PAD.(2)在平面PAD内作PE⊥AD,垂足为E.由(1)知,AB⊥平面PAD,故AB⊥PE,可得PE⊥平面ABCD.设AB=x,则由已知可得AD=2x,PE=22x.故四棱锥P­ABCD的体积VP­ABCD=13AB·AD·PE=13x3.由题设得13x3=83,故x=2.从而PA=PD=2,AD=BC=22,PB=PC=22.可得四棱锥P­ABCD的侧面积为12PA·PD+12PA·AB+12PD·DC+12BC2sin60°=6+23.(1)几何体的体积柱体的体积V=S底·h.锥体的体积V=13S底·h.(2)几何体的表面积直棱柱的侧面积S侧=C底·l,其他几何体一般要对各个侧面、底面逐个分析求解面积,最后求和.(3)计算几何体体积的关键及注意点计算几何体的体积时,关键是确定几何体的高,若是不方便求,要注意进行体积的转化.(2020·重庆市学业质量调研)如图所示,在四棱锥P­ABCD中,∠CAD=∠ABC=90°,∠BAC=∠ADC=30°,PA⊥平面ABCD,E为PD的中点,AC=2.(1)求证:AE∥平面PBC;(2)若四面体PABC的体积为33,求△PCD的面积.解:(1)证明:如图,取CD的中点F,连接EF,AF,则EF∥PC,又易知∠BCD=∠AFD=120°,所以AF∥BC,又EF∩AF=F,PC∩BC=C,所以平面AEF∥平面PBC.又AE⊂平面AEF,所以AE∥平面PBC.(2)由已知得,V四面体PABC=13·12AB·BC·PA=33,可得PA=2.过点A作AQ⊥CD于点Q,连接PQ,在△ACD中,AC=2,∠CAD=90°,∠ADC=30°,所以CD=4,AQ=2×234=3,则PQ=22+3=7.因为PA⊥平面ABCD,所以PA⊥CD.又AQ∩PA=A,所以CD⊥平面PAQ,CD⊥PQ.所以S△PCD=12×4×7=27.空间中的翻折问题(师生共研)(2019·高考全国卷Ⅲ)图1是由矩形ADEB,Rt△ABC和菱形BFGC组成的一个平面图形,其中AB=1,BE=BF=2,∠FBC=60°.将其沿AB,BC折起使得BE与BF重合,连接DG,如图2.(1)证明:图2中的A,C,G,D四点共面,且平面ABC⊥平面BCGE;(2)求图2中的四边形ACGD的面积.【解】(1)证明:由已知得AD∥BE,CG∥BE,所以AD∥CG,故AD,CG确定一个平面,从而A,C,G,D四点共面.由已知得AB⊥BE,AB⊥BC,故AB⊥平面BCGE.又因为AB⊂平面ABC,所以平面ABC⊥平面BCGE.(2)如图,取CG的中点M,连接EM,DM.因为AB∥DE,AB⊥平面BCGE,所以DE⊥平面BCGE,故DE⊥CG.由已知,四边形BCGE是菱形,且∠EBC=60°得EM⊥CG,故CG⊥平面DEM.因此DM⊥CG.在Rt△DEM中,DE=1,EM=3,故DM=2.所以四边形ACGD的面积为4.解决此类问题的关键就是根据折痕,准确把握平面图形翻折前后的两个“不变关系”:(1)与折痕垂直的线段,翻折前后垂直关系不改变;(2)与折痕平行的线段,翻折前后平行关系不改变.其步骤为:第一步—确定折叠前后的各量之间的关系,搞清折叠前后的变化量和不变量↓第二步—在折叠后的图形中确定线和面的位置关系,明确需要用到的线面↓第三步—利用判定定理或性质定理进行证明(2020·济南市模拟考试)如图1所示,在等腰梯形ABCD中,AB∥CD,∠BAD=45°,AB=2CD=4,点E为AB的中点.将△ADE沿DE折起,使点A到达P的位置,得到如图2所示的四棱锥P­EBCD,点M为棱PB的中点.(1)求证:PD∥平面MCE;(2)若平面PDE⊥平面EBCD,求三棱锥M­BCE的体积.解:(1)证明:在题图1中,因为BE=12AB=CD且BE∥CD,所以四边形EBCD是平行四边形.如图,连接BD,交CE于点O,连接OM,所以点O是BD的中点,又点M为棱PB的中点,所以OM∥PD,因为PD⊄平面MCE,OM⊂平面MCE,所以PD∥平面MCE.(2)在题图1中,因为EBCD是平行四边形,所以DE=BC,因为四边形ABCD是等腰梯形,所以AD=BC,所以AD=DE,因为∠BAD=45°,所以AD⊥DE.所以PD⊥DE,又平面PDE⊥平面EBCD,且平面PDE∩平面EBCD=DE,所以PD⊥平面EBCD.由(1)知OM∥PD,所以OM⊥平面EBCD,在等腰直角三角形ADE中,因为AE=2,所以AD=DE=2,所以OM=12PD=12AD=22,S△BCE=S△ADE=1,所以V三棱锥M­BCE=13S△BCE·OM=26.立体几何中的探索性问题(师生共研)(2018·高考全国卷Ⅲ)如图,矩形ABCD所在平面与半圆弧CD︵所在平面垂直,M是CD︵上异于C,D的点.(1)证明:平面AMD⊥平面BMC;(2)在线段AM上是否存在点P,使得MC∥平面PBD?说明理由.【解】(1)证明:由题设知,平面CMD⊥平面ABCD,交线为CD.因为BC⊥CD,BC⊂平面ABCD,所以BC⊥平面CMD,故BC⊥DM.因为M为CD︵上异于C,D的点,且DC为直径,所以DM⊥CM.又BC∩CM=C,所以DM⊥平面BMC.而DM⊂平面AMD,故平面AMD⊥平面BMC.(2)当P为AM的中点时,MC∥平面PBD.证明如下:如图,连接AC交BD于O.因为ABCD为矩形,所以O为AC中点.连接OP,因为P为AM中点,所以MC∥OP.MC⊄平面PBD,OP⊂平面PBD,所以MC∥平面PBD.解决探索性问题的方法(1)对命题条件探索的三种途径途径一:先猜后证,即先观察与尝试给出条件再证明.途径二:先通过命题成立的必要条件探索出命题成立的条件,再证明充分性.途径三:将几何问题转化为代数问题,探索出命题成立的条件.(2)对命题结论的探索方法从条件出发,探索出要求的结论是什么,对于探索结论是否存在,求解时常假设结论存在,再寻找与条件相容或者矛盾的结论.[注意]对探索性问题应先写出结论,再写出证明过程或理由.如图,三棱锥P­ABC中,PA⊥平面ABC,PA=1,AB=1,AC=2,∠BAC=60°.(1)求三棱锥P­ABC的体积;(2)在线段PC上是否存在点M,使得AC⊥BM,若存在点M,求出PMMC的值;若不存在,请说明理由.解:(1)由题意知AB=1,AC=2,∠BAC=60°,可得S△ABC=12·AB·AC·sin60°=32.由PA⊥平面ABC,可知PA是三棱锥P­ABC的高.又PA=1,所以三棱锥P­ABC的体积V=13·S△ABC·PA=36.(2)在平面ABC内,过点B作BN⊥AC,垂足为N,在平面PAC内,过点N作MN∥PA交PC于点M,连接BM.由PA⊥平面ABC知PA⊥AC,所以MN⊥AC.由于BN∩MN=N,故AC⊥平面MBN.又BM⊂平面MBN,所以AC⊥BM.在Rt△BAN中,AN=AB·cos∠BAC=12,从而NC=AC-AN=32.由MN∥PA,得PMMC=ANNC=13.本部分内容讲解结束按ESC键退出全屏播放

1 / 23
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功