2021版高考数学一轮复习 第八章 立体几何 第1讲 简单几何体及其直观图、三视图课件 理 北师大版

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

数学第八章立体几何第1讲简单几何体及其直观图、三视图01基础知识自主回顾02核心考点深度剖析04高效演练分层突破03方法素养助学培优多面体结构特征棱柱有两个面_________,其余各面都是四边形且每相邻两个四边形的公共边都互相平行棱锥有一个面是多边形,而其余各面都是有一个_________的三角形棱台棱锥被_________底面的平面所截,截面和底面之间的部分叫做棱台一、知识梳理1.空间几何体的结构特征(1)多面体的结构特征互相平行公共顶点平行于(2)旋转体的形成几何体旋转图形旋转轴圆柱矩形矩形一边所在的直线或对边中点连线所在直线圆锥直角三角形或等腰三角形一直角边所在的直线或等腰三角形底边上的高所在直线圆台直角梯形或等腰梯形直角腰所在的直线或等腰梯形上下底中点连线所在直线球半圆或圆直径所在的直线2.直观图(1)画法:常用斜二测画法.(2)规则:①在已知图形中建立直角坐标系xOy,画直观图时,它们分别对应x′轴和y′轴,两轴交于点O′,使x′O′y′=________,它们确定的平面表示水平平面.②已知图形中平行于x轴或y轴的线段,在直观图中分别画成平行于x′轴和y′轴的线段.③已知图形中平行于x轴的线段,在直观图中保持原长度不变,平行于y轴的线段,长度为________________.45°原来的123.三视图(1)几何体的三视图包括主视图、左视图、俯视图,分别是从几何体的________方、________方、________方观察几何体画出的轮廓线.(2)三视图的画法①基本要求:___________,___________,___________.②画法规则:___________一样高,___________一样长,___________一样宽;看不到的线画_____线.正前正左正上长对正高平齐宽相等正侧正俯侧俯虚常用结论1.斜二测画法中的“三变”与“三不变”“三变”坐标轴的夹角改变与y轴平行的线段的长度变为原来的一半图形改变“三不变”平行性不改变与x,z轴平行的线段的长度不改变相对位置不改变2.常见旋转体的三视图(1)球的三视图都是半径相等的圆.(2)水平放置的圆锥的主视图和左视图均为全等的等腰三角形.(3)水平放置的圆台的主视图和左视图均为全等的等腰梯形.(4)水平放置的圆柱的主视图和左视图均为全等的矩形.二、教材衍化1.下列说法正确的是()A.相等的角在直观图中仍然相等B.相等的线段在直观图中仍然相等C.正方形的直观图是正方形D.若两条线段平行,则在直观图中对应的两条线段仍然平行解析:选D.由直观图的画法规则知,角度、长度都有可能改变,而线段的平行性不变.2.在如图所示的几何体中,是棱柱的为________.(填写所有正确的序号)答案:③⑤3.已知如图所示的几何体,其俯视图正确的是________.(填序号)解析:由俯视图定义易知选项③符合题意.答案:③一、思考辨析判断正误(正确的打“√”,错误的打“×”)(1)有两个面平行,其余各面都是平行四边形的几何体是棱柱.()(2)有一个面是多边形,其余各面都是三角形的几何体是棱锥.()(3)夹在两个平行的平面之间,其余的面都是梯形,这样的几何体一定是棱台.()(4)正方体、球、圆锥各自的三视图中,三视图均相同.()(5)用两平行平面截圆柱,夹在两平行平面间的部分仍是圆柱.()(6)菱形的直观图仍是菱形.()××××××二、易错纠偏常见误区(1)棱柱的概念不清致误;(2)不清楚三视图的三个视图间的关系,想象不出原几何体而出错;(3)斜二测画法的规则不清致误.1.如图,长方体ABCD­A′B′C′D′中被截去一部分,其中EH∥A′D′.剩下的几何体是()A.棱台B.四棱柱C.五棱柱D.六棱柱解析:选C.由几何体的结构特征,剩下的几何体为五棱柱.故选C.2.将一个长方体沿相邻三个面的对角线截去一个棱锥,得到的几何体的主视图与俯视图如图所示,则该几何体的左视图为()解析:选B.先根据主视图和俯视图还原出几何体,再作其左视图.由几何体的主视图和俯视图可知该几何体为图①,故其左视图为图②.故选B.3.在直观图(如图所示)中,四边形O′A′B′C′为菱形且边长为2cm,则在平面直角坐标系xOy中,四边形ABCO为________,面积为________cm2.解析:由斜二测画法的特点,知该平面图形的直观图的原图,即在平面直角坐标系xOy中,四边形ABCO是一个长为4cm,宽为2cm的矩形,所以四边形ABCO的面积为8cm2.答案:矩形8空间几何体的几何特征(自主练透)1.下列说法正确的是()A.各个面都是三角形的几何体是三棱锥B.夹在圆柱的两个平行截面间的几何体还是一个旋转体C.棱锥的侧棱长与底面多边形的边长相等,则此棱锥可能是六棱锥D.圆锥的顶点与底面圆周上的任意一点的连线都是母线解析:选D.由图知,A不正确.两个平行平面与底面不平行时,截得的几何体不是旋转体,则B不正确.侧棱长与底面多边形的边长相等的棱锥一定不是六棱锥,故C错误.由定义知,D正确.2.给出下列几个命题:①在圆柱的上、下底面的圆周上各取一点,则这两点的连线是圆柱的母线;②底面为正多边形,且有相邻两个侧面与底面垂直的棱柱是正棱柱;③棱台的上、下底面可以不相似,但侧棱长一定相等.其中正确命题的个数是()A.0B.1C.2D.3解析:选B.①不一定,只有这两点的连线平行于旋转轴时才是母线;②正确;③错误,棱台的上、下底面是相似且对应边平行的多边形,各侧棱延长线交于一点,但是侧棱长不一定相等.3.给出下列命题:①棱柱的侧棱都相等,侧面都是全等的平行四边形;②若三棱锥的三条侧棱两两垂直,则其三个侧面也两两垂直;③在四棱柱中,若两个过相对侧棱的截面都垂直于底面,则该四棱柱为直四棱柱;④存在每个面都是直角三角形的四面体.其中正确命题的序号是________.解析:①不正确,根据棱柱的定义,棱柱的各个侧面都是平行四边形,但不一定全等;②正确,若三棱锥的三条侧棱两两垂直,则三个侧面构成的三个平面的二面角都是直二面角;③正确,因为两个过相对侧棱的截面的交线平行于侧棱,又垂直于底面;④正确,如图,正方体ABCD­A1B1C1D1中的三棱锥C1­ABC,四个面都是直角三角形.答案:②③④空间几何体概念辨析问题的常用方法空间几何体的三视图(多维探究)角度一已知几何体,识别三视图(1)(2020·宜宾模拟)已知棱长都为2的正三棱柱ABC­A1B1C1的直观图如图.若正三棱柱ABC­A1B1C1绕着它的一条侧棱所在直线旋转,则它的左视图可以为()(2)(2020·湖南衡阳二模)如图,正方体ABCD­A1B1C1D1的顶点A,B在平面α上,AB=2.若平面A1B1C1D1与平面α所成角为30°,由如图所示的俯视方向,正方体ABCD­A1B1C1D1在平面α上的俯视图的面积为()A.2B.1+3C.23D.22【解析】(1)由题知,四个选项的高都是2.若左视图为A,则中间应该有一条竖直的实线或虚线;若左视图为C,则其中有两条侧棱重合,不应有中间竖线;若左视图为D,则长度应为3,而不是1.故选B.(2)由题意得AB在平面α内,且平面α与平面ABCD所成的角为30°,与平面B1A1AB所成的角为60°,故所得的俯视图的面积S=2×(2cos30°+2cos60°)=2(cos30°+cos60°)=1+3.【答案】(1)B(2)B角度二已知三视图,判断几何体(1)如图,网格纸的各小格都是正方形,粗实线画出的是一个几何体的三视图,则这个几何体是()A.三棱锥B.三棱柱C.四棱锥D.四棱柱(2)某四棱锥的三视图如图所示,在此四棱锥的侧面中,直角三角形的个数为()A.1B.2C.3D.4【解析】(1)由题三视图得直观图如图所示,为三棱柱,故选B.(2)将三视图还原为直观图,几何体是底面为直角梯形,且一条侧棱和底面垂直的四棱锥,如图所示.易知,BC∥AD,BC=1,AD=AB=PA=2,AB⊥AD,PA⊥平面ABCD,故△PAD,△PAB为直角三角形,因为PA⊥平面ABCD,BC⊂平面ABCD,所以PA⊥BC,又BC⊥AB,且PA∩AB=A,所以BC⊥平面PAB,又PB⊂平面PAB,所以BC⊥PB,所以△PBC为直角三角形,容易求得PC=3,CD=5,PD=22,故△PCD不是直角三角形,故选C.【答案】(1)B(2)C【迁移探究1】(变问法)在本例(2)条件下,求该四棱锥的所有棱中,最长棱的棱长是多少?解:由三视图可知,PA=AB=AD=2,BC=1,经计算可知,PB=PD=22,PC=3,CD=5,故最长棱为PC,且|PC|=3.【迁移探究2】(变问法)在本例(2)条件下,求该四棱锥的五个面中,最小面的面积.解:面积最小的面为面PBC,且S△PBC=12BC·PB=12×1×22=2,即最小面的面积为2.角度三已知几何体的某些视图,判断其他视图(1)(2020·福州模拟)如图为一圆柱切削后的几何体及其主视图,则相应的左视图可以是()(2)(2020·河北衡水中学联考)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有刍甍,下广三丈,袤四丈,上袤二丈,无广,高二丈,问:积几何?”其意思为:“今有底面为矩形的屋脊状的楔体,下底面宽3丈、长4丈,上棱长2丈,高2丈,问:它的体积是多少?”已知该楔体的主视图和俯视图如图中粗实线所示,则该楔体的左视图的周长为()A.3丈B.6丈C.8丈D.(5+13)丈【解析】(1)圆柱被不平行于底面的平面所截,得到的截面为椭圆,结合主视图,可知左视图最高点在中间,故选B.(2)由题意可知该楔体的左视图是等腰三角形,它的底边长为3丈,相应高为2丈,所以腰长为22+322=52(丈),所以该楔体左视图的周长为3+2×52=8(丈).故选C.【答案】(1)B(2)C三视图问题的常见类型及解题策略(1)由几何体的直观图求三视图.注意主视图、左视图和俯视图的观察方向,注意看到的部分用实线表示,看不到的部分用虚线表示.(2)由几何体的部分视图画出剩余的视图.先根据已知的一部分视图,还原、推测其直观图的可能形式,然后再找其剩下部分视图的可能形式.当然作为选择题,也可将选项逐项代入,再看看给出的部分三视图是否符合.(3)由几何体的三视图还原几何体的形状.要熟悉柱、锥、台、球的三视图,明确三视图的形成原理,结合空间想象将三视图还原为直观图.1.中国古建筑借助榫卯将木构件连接起来.构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是()解析:选A.由题意知,在咬合时带卯眼的木构件中,从俯视方向看,榫头看不见,所以是虚线,结合榫头的位置知选A.2.(2020·安徽宣城二模)一个几何体的三视图如图所示,在该几何体的各个面中,面积最大面的面积是()A.2B.22C.23D.4解析:选C.如图所示,由三视图可知该几何体是四棱锥P­ABCD截去三棱锥P­ABD后得到的三棱锥P­BCD.其中四棱锥中,底面ABCD是正方形,PA⊥底面ABCD,且PA=AB=2,易知面积最大面为面PBD,面积为34×(22)2=23.故选C.3.某圆柱的高为2,底面周长为16,其三视图如图.圆柱表面上的点M在主视图上的对应点为A,圆柱表面上的点N在左视图上的对应点为B,则在此圆柱侧面上,从M到N的路径中,最短路径的长度为()A.217B.25C.3D.2解析:选B.由三视图可知,该几何体为如图①所示的圆柱,该圆柱的高为2,底面周长为16.画出该圆柱的侧面展开图,如图②所示,连接MN,则MS=2,SN=4,则从M到N的路径中,最短路径的长度为MS2+SN2=22+42=25.故选B.空间几何体的直观图(自主练透)1.如图所示为一个平面图形的直观图,则它的实际形状四边形ABCD为()A.平行四边形B.梯形C.菱形D.矩形解析:选D.由斜二测画法可知在原四边形ABCD中DA⊥AB,并且AD∥BC,AB∥CD,故四

1 / 56
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功