多策略雷达干扰资源分配方法研究

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

1、多策略雷达干扰资源分配方法研究1.1引言1.1.1研究背景和意义在现代高科技战争条件下,电子战继海陆空三维战争之后发展成为第四维战争,电子对抗是取得制天权、制空权、制海权和战场主动权的基础和先决条件,己成为现代战争的重要组成部分,电子对抗装备是否正确使用和调度,对整个战局起着重要的作用。雷达对抗是电子战的重要组成部分,它是以雷达为主要作战对象,通过电子侦察获取敌方雷达、携带雷达的武器平台和雷达制导武器系统的技术参数及军事部署情报,并利用电子干扰、电子欺骗和电子攻击等软、硬杀伤手段,削弱、破坏敌方雷达的作战效能而进行的电子斗争。雷达是对远距离目标进行无线电探测、定位、测轨和识别的电子系统,是迄今为止最为有效的远程电子探测设备之一。它根据雷达目标对电磁波的散射来判定目标的存在,并确定目标的空间位置[1]。雷达具有极广泛的用途,是重要的信息战装备,具有全天候、远距离、大面积监视能力,这使它在信息获取中具有关键的作用。破坏敌方雷达的有效使用,就可造成敌方雷达迷盲、武器失控、指挥和控制失效、战斗力丧失。经过第二次世界大战及战后几场局部战争的考验和近代雷达对抗技术发展的推动,雷达对抗己成为当代电子战和军事电子领域中发展最为活跃的技术领域之一。1.1.1.1问题提出在现代战争中,电子对抗战场环境复杂多变,我们所面对的敌方雷达目标往往有很多个,在同一时间需要干扰的雷达目标也有几个甚至几十个,而我方可用的干扰资源往往也有几个到几十个,但一般是很有限的。那么如何合理充分地利用干扰资源,让既有的干扰资源获取更大的作战效益,就成了战场指挥员所面临的棘手问题。很多情况下,指挥员都是凭自己的经验来分配干扰任务,但是当敌方雷达数量很多,或者战场环境很复杂时,这种经验手动分配可能会带来严重的后果。雷达干扰资源分配是指在雷达侦察的基础上,针对敌方雷达的数量、威胁程度、威胁时间,结合我方现有的干扰资源以及战术要求,运用各种干扰资源分配技术,对干扰资源进行任务分配的过程[2]。雷达干扰资源分配合理与否是直接影响作战效果的重要因素之一,为了最大限度的利用我方干扰资源,最有效地干扰敌方威胁雷达,必须合理分配我方有限的干扰资源。本章研究的雷达干扰资源分配的作战思想是这样的:在空中进攻作战中,空袭方(我方)作战飞机按照上级规定的空袭任务实施空中突击。为了掩护空袭飞机的安全,推迟防空方(敌方)雷达对我方作战飞机的发现时间,除使用硬摧毁手段进行先期火力打击外,还将利用电子对抗手段干扰压制敌方的搜索雷达以及预警雷达系统,以缩小雷达的探测区域,降低其探测能力,保障我进攻作战任务的顺利完成。本章内容以空中进攻作战为背景,讨论在攻击航线确定的条件下,为有效降低敌方雷达的探测能力,而应采取的最佳干扰资源分配决策。为明确讨论,将问题进一步限定为:在完成了目标雷达威胁分析、干扰任务分析、干扰参数选择、干扰机(站)位置预先配置的情况下,为实现我方雷达干扰资源实时有效地干扰一组威胁目标,决定具体用哪一部或者哪几部干扰机干扰哪一部威胁雷达,以达到最佳的整体干扰效益。雷达干扰资源分配实际上是雷达干扰任务计划的一部分,一般作战任务计划过程包括任务分解和任务资源分配两部分。在这里,雷达干扰作战的任务分解是根据雷达侦察获取的敌方雷达目标数量、雷达参数和性质、型号和性能等情报,经态势分析判定其用途和对我方军事行动(目标)的威胁程度以及需干扰时间,然后结合我方被保卫目标的重要程度,来综合确定对雷达的干扰顺序。本章是在这部分工作的基础上进行的,即只研究任务序列确定后的资源分配。1.1.1.2雷达干扰资源分配算法研究的意义雷达干扰资源分配一直是个十分棘手的问题。由于电子战的特点及其任务计划的高度不确定性、高度复杂性以及时间紧迫性等特点,使得雷达干扰资源分配成为作战指挥不可缺少的计划过程。在当前作战过程中,利用计算机进行任务计划的辅助生成,是提高指挥员的谋略水平与指挥能力,促进决策更加科学化和军事理论研究发展的重要手段。资源分配方案的生成是一个计划演进求精的过程。制定分配方案的目的是在应急形势下,基于不完整、不精确、多变化的战场信息,快速、正确地预测并处理战场不确定性,提高资源分配的质量和效率,从而提高指挥的正确性、及时性与稳定性。为了合理分配干扰资源以取得最佳的或满意的整体干扰效果,我们有必要对雷达干扰作战的资源分配方法进行探索。雷达干扰资源分配是电子对抗领域的一个重要研究课题,合理的干扰资源分配可以使有限的干扰资源发挥最佳的干扰效果。研究结果将给指挥人员提供一个较优的辅助任务计划方案,在对雷达实旌电子干扰作战的各个阶段,为指挥员进行干扰决策指挥提供科学的辅助参考,从而大大提高作战资源利用率,缩短作战总使命的完成时间,提高作战效率,减少作战平台资源及兵力损耗。1.1.2国内外研究现状和发展趋势1.1.2.1雷达干扰资源分配原则一般根据以下两种战术原则进行干扰任务分配决策[3]。(一)一对一原则。包括以下两种情况:1)一部干扰机在同一时刻只对一部雷达进行干扰,在整个过程中,同一部干扰机可干扰多部雷达,即干扰机可以重复利用;2)对每一部雷达,在整个过程中只分配一部干扰机。在干扰资源比较紧张的情况下,根据一对一原则进行干扰任务分配,可以尽可能多的对敌方雷达实施干扰,缺点是不能保证对每一部雷达的干扰都有效。(二)多对一原则。包括以下两种情况:1)一部干扰机在同一时刻只能干扰一部雷达,在整个过程中,同一部干扰机可干扰多部雷达;2)对每一部雷达,在整个过程中可分配多部干扰机。根据多对一原则进行干扰任务分配,主要是为了抓住主要矛盾,以便对敌方威胁程度大的雷达进行重点干扰,缺点是当我方干扰机数量不是足够多,或者敌方雷达数量很多时,容易造成漏干扰。早期的雷达对抗,都是“点对点”的对抗,即用一部干扰机对付一部雷达。在实际的干扰战术应用时,“面对点”、“点对面”和“面对面”干扰的情况均有出现。例如,为了对付非常重要的目标(预警机雷达等),就需要“面对点”的干扰,当单个作战平台遇到多方向的攻击时,就需要“点对面”的干扰。随着雷达对抗技术的发展,现代雷达广泛采用多雷达冗余覆盖,或多雷达组网工作。相应地,雷达对抗也正在向“面对面”的方向发展,即应用多部分布在不同空域或地域上的干扰机同时对特定区域内的多部雷达实施干扰[4]。相应地,对抗方式由点到面、点面结合的发展趋势[4]对干扰资源分配技术也提出了新的挑战。因此,为了满足现代雷达对抗的需要,本章在上述一对一、多对一原则的基础上,针对“点对面”和“面对面”对抗,又提出了一对多和多对多的分配策略。1.1.2.2雷达干扰资源分配算法关于雷达干扰资源分配问题的研究,主要有下面几种算法。(一)传统的动态规划算法[5]过去,一般采用传统的动态规划算法来解决雷达干扰资源分配问题。这在把雷达干扰效果当作一个综合评价值时是可以接受的。其具体做法是忽略像干扰样式等一些难以处理的因素,把雷达干扰资源视作一种普通的资源,将其分配问题简化成普通的单目标规划问题,进而采用传统的动态规划模型来求解。这种简化虽然可以减少计算量,降低问题的复杂性,但同时精确性也大为降低,因此往往不太符合实际情况。(二)模糊多属性动态规划模型[5]由于干扰效果不是一个给定的综合评价值,而是与很多因素有关,如干扰频率、干扰功率、干扰时机和干扰样式等,又由于各指标对干扰效果影响的模糊不确定性,使得雷达干扰资源分配问题实际上是一类典型的多阶段模糊多属性决策问题。模糊多属性动态规划模型利用多属性决策方法和模糊集理论,解决了雷达干扰资源分配问题中的多因素和模糊性问题。这种方法利用专家知识,通过模型运算,实现多阶段多属性整体优化,因而能够快速合理地进行雷达干扰资源分配,达到最佳整体效果。但是,由于各雷达/任务重要性加权系数的不同,即使一部干扰机对两部雷达产生相同的干扰效果,它们对于完成整个作战使命的贡献也是不一样的,因此,简单地将干扰效果作为动态规划的目标值是不合适的。本章将由干扰效果和与之相对应的目标雷达权重所共同确定的对作战效能的影响程度定义为干扰效益,对传统的模糊多属性动态规划模型做出了改进,将其目标函数由干扰效果最大化改为干扰效益最大化。本章后面小节所要讨论的单目标雷达任务干扰资源分配模型就是以这种改进后的模糊多属性动态规划算法为核心实现的。(三)智能雷达干扰决策支持系统IDSSRJ(TheIntelligentDecisionSupportSystemofRadarJamming)[6]智能雷达干扰决策支持系统就是为适应现代电子战态势瞬息万变、情况多种多样的特点而应用于地对空雷达干扰作战指挥的智能决策支持系统。其主要功能包括:预先决策、干扰资源配置、干扰方案拟定和干扰效果综合评估等。其中干扰方案拟定包括:干扰参数的决策、干扰时机的决策、干扰资源分配以及干扰效果评估。IDSSRJ运用分级模糊综合评估技术对各种干扰方案的雷达干扰效果进行综合评价,然后根据评价结果,选择最优干扰方案。干扰资源分配技术是雷达干扰智能决策支持系统中的核心内容,如何快速对现有资源进行合理地分配直接关系到该雷达干扰智能决策支持系统的成败。根据分配决策时所依据的战术原则以及决策问题规模的大小,智能雷达干扰决策支持系统(IDSSRJ)提出了三种不同分配技术,用三种不同的方法解决雷达干扰资源分配问题。第一种方法:在一对一分配原则中,由于各阶段的状态较少,且各状态满足无后效性,因此系统采用多级优化动态资源分配算法,就是上面所说的模糊多属性动态规划算法。该方法能够在我方干扰机的数量和敌方数量威胁雷达相等的情况下快速地找到最优的或者合理的分配决策方案,不足之处在于当系统规模较大时运算速度比较慢。第二种方法:在多对一分配原则中,对于较小规模的分配决策,在系统运行速度允许的条件下,采用全空间搜索算法。同样,该方法能够在我方干扰资源充足的情况下给出最优的分配方案。第三种方法:在多对一分配原则中,对于较大规模的分配决策,系统采用随机抽样资源分配算法,该算法能够快速找到一种合理的干扰资源分配方案,但它却不是最优的分配方案。当系统的决策规模较大时,采用全空间搜索机制必将面临“组合爆炸”问题,从而使系统无法运行,给不出分配方案。在分配合理性上,多级优化动态资源分配算法采用分阶段优化技术,由于保证每个阶段都是最优解,因此最后的分配决策方案也是最优的:全空间搜索算法在所有解空间进行搜索,这种方法以牺牲搜索时间来保证分配决策方案的最优化;而随机抽样资源分配算法,可以获得合理的或者满意的分配决策方案。在分配速度上,多级优化动态资源分配算法采用分阶段优化技术,由于在每个阶段都抛弃了大量的劣质解,因此大大提高了分配速度;而全空间搜索算法主要是应用于小规模分配决策,其决策速度也很快;而随机抽样资源分配算法,以牺牲决策方案效益的方式来保证决策速度。三种方法各有利弊,适用于不同的情况,基本上都能实现适时合理分配。IDSSRJ系统能够针对不同的决策情况,选择不同的分配算法,从而快速有效地进行资源分配。(四)基于贴近度的雷达干扰资源分配策略[7]文献[7]在多级优化动态资源分配算法的基础上提出了基于贴近度的雷达干扰资源分配策略。该方法综合敌我双方装备的特征信息,分别从时域、频域、空域、能量及对抗双方的工作体制、对抗样式等六个方面详细分析影响雷达干扰效果的特征因子,以此来构建全面评估雷达干扰效果的指标体系。最后在此基础上利用Euclid贴近度原理,对干扰资源的分配策略进行研究。该方法评估全面,算法简单,形成分配策略快捷,易于计算机实现,本文应加以借鉴。(五)连续循环布尔操作法[8]文献[8]提出了一种连续循环布尔操作法,该算法基于矩阵变换,可以获得较好的分配方案。连续循环布尔操作法也是基于雷达干扰智能决策支持系统中干扰资源的一对一分配原则。(六)最大元素法[9]文献[9]提出的最大元素法基于运筹学中的表上作业法,该算法可以兼顾威胁雷达数量和干扰资源数量的各种关系,不论是一对一、多对一、还是少对多,都能做出合理的干扰资源分配。上述几种算法都是基于一对一和多对一原则的,论文在充分学习和总结现有方法的基础上

1 / 56
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功