2020年春九年级数学下册 第1章 二次函数 1.2 二次函数的图像与性质(第5课时)课件(新版)湘

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

1.2二次函数的图象与性质第1章二次函数导入新课讲授新课当堂练习课堂小结第5课时二次函数y=ax2+bx+c的图象与性质学习目标1.会用描点法画二次函数y=ax2+bx+c的图象;2.会用配方法或公式法求二次函数y=ax2+bx+c的顶点坐标、对称轴与最值,并掌握其性质;(重点)3.二次函数性质的综合应用.(难点)我们已经知道形如y=a(x-h)2+k的二次函数的图象的画法,可在生活和学习中,很多二次函数是用一般形式y=ax2+bx+c表示的,如图.导入新课情境引入y=ax2+bx+c用一般式表示?根据一般式画图象讲授新课探究问题1:如何画出的图象呢?216212yxx我们已经会画y=a(x-h)2+k的图象,因此,只需要把配方成的形式就可以了.216212xx1)2xhk(将一般式y=ax2+bx+c化成顶点式y=a(x-h)2+k一配方法216212xxy4212212xx提取二次项系数42363612212xx配方66212x整理.36212x化简:去掉中括号配方216212xxy你知道是怎样配方的吗?(1)“提”:提出二次项系数;(2)“配”:括号内配成完全平方;(3)“化”:化成顶点式.温馨提示:配方后的表达式通常称为配方式或顶点式3)6(212xy我们如何用配方法将一般式y=ax2+bx+c(a≠0)化成顶点式y=a(x-h)2+k?y=ax²+bx+c2baxxca22222bbbaxxcaaa2224bbaxcaa归纳总结一般地,二次函数y=ax2+bx+c的可以通过配方化成y=a(x-h)2+k的形式,即2224().24bacbyaxbxcaxaa将函数化为y=a(x-h)2+k的形式.21212yxx解配方:21212yxx222142212xx21124122x21212x练一练根据顶点式确定对称轴,顶点坐标.x…6789………21632yx列表:自变量x从顶点的横坐标6开始取值.对称轴:直线x=6;顶点坐标:(6,3).3)6(212xy33.557.5问题2:我们已经知道,那么现在你会画这个二次函数的图象吗?216212yxx21(6)32x二次函数y=ax2+bx+c的图象与性质二描点、连线,画出图象在对称轴右边的部分.利用对称性,画出图象在对称轴左边的部分,即得.Ox5510●●●●●(6,3)●●(6,3)问题3:从图看出,当x等于多少时,函数的值最小?这个最小值是多少?216212xxyOx5510当x等于顶点的横坐标6时,函数值最小,这个最小值等于顶点的纵坐标3.问题4:这个函数的增减性是怎样的?当x6时,函数值随x的增大而减小;当x6时,函数值随x的增大而增大.归纳总结抛物线y=ax2+bx+c的顶点坐标是:对称轴是:直线24(,).24bacbaa.2bxa二次函数y=ax2+bx+c的图象和性质(1)xyO如果a0,当x时,y随x的增大而减小;当x时,y随x的增大而增大;当x=时,函数达到最小值,最小值为.2bxa2ba2ba2ba二次函数y=ax2+bx+c的图象和性质244acba(2)2bxaxyO如果a0,当x时,y随x的增大而增大;当x时,y随x的增大而减小;当x=时,函数达到最大值,最大值为.2ba2ba2ba244acba二次函数y=ax2+bx+c的图象和性质练一练填表:顶点坐标对称轴最值y=-x2+2xy=-2x2-1y=9x2+6x-5(1,3)x=1最大值1(0,-1)y轴最大值-1最小值-6(,-6)13直线x=13例1若点A(2,y1),B(-3,y2),C(-1,y3)三点在抛物线y=x2-4x-m的图象上,则y1、y2、y3的大小关系是()A.y1>y2>y3B.y2>y1>y3C.y2>y3>y1D.y3>y1>y2解析:∵二次函数y=x2-4x-m中a=1>0,∴开口向上,对称轴为x=2.∵A(2,y1)中x=2,∴y1最小.又∵B(-3,y2),C(-1,y3)都在对称轴的左侧,而在对称轴的左侧,y随x的增大而减小,故y2>y3.∴y2>y3>y1.故选C.典例精析C例2在同一直角坐标系中,函数y=mx+m和函数y=mx2+2x+2(m是常数,且m≠0)的图象可能是()解析:A、B中由函数y=mx+m的图象可知m<0,即函数y=mx2+2x+2开口方向朝下,对称轴为,则对称轴应在y轴右侧,故A、B选项错误;2102xmm>C中由函数y=mx+m的图象可知m>0,即函数y=mx2+2x+2开口方向朝上,对称轴为<0,则对称轴应在y轴左侧,故C选项错误;D中由函数y=mx+m的图象可知m<0,即函数y=mx2+2x+2开口方向朝下,对称轴为>0,则对称轴应在y轴右侧,与图象相符,故选D.212xmm212xmm例3如图是二次函数y=ax2+bx+c(a≠0)图象的一部分,x=-1是对称轴,有下列判断:①b-2a=0;②4a-2b+c0;③a-b+c=-9a;④若(-3,y1),(,y2)是抛物线上两点,则y1y2.其中正确的是()23A.①②③B.①③④C.①②④D.②③④xyO2x=-1B二次函数的图象与系数的关系三1.根据公式确定下列二次函数图象的对称轴和顶点坐标:22(1)21213;(2)580319;1(3)22;2(4)12.yxxyxxyxxyxx直线x=33,5直线x=88,1直线x=1.2559,48直线x=0.519,24当堂练习2.把抛物线y=x2+bx+c的图象向右平移3个单位长度,再向下平移2个单位长度,所得图象的解析式为y=x2-3x+5,则()A.b=3,c=7B.b=6,c=3C.b=-9,c=-5D.b=-9,c=21解析:y=x2-3x+5化为顶点式为y=(x-)2+.将y=(x-)2+向左平移3个单位长度,再向上平移2个单位长度,即为y=x2+bx+c.则y=x2+bx+c=(x+)2+,化简后得y=x2+3x+7,即b=3,c=7.故选A.321143211432194A3.已知二次函数y=ax2+4x+a-1的最小值为2,则a的值为()A.3B.-1C.4D.4或-1解析:∵二次函数y=ax2+4x+a-1有最小值2,∴a>0,y最小值===2,整理,得a2-3a-4=0,解得a=-1或4.∵a>0,∴a=4.故选C.244acba24(1)44aaaC4.已知二次函数y=-x2+2bx+c,当x>1时,y的值随x值的增大而减小,则实数b的取值范围是()A.b≥-1B.b≤-1C.b≥1D.b≤1解析:∵二次项系数为-1<0,∴抛物线开口向下,在对称轴右侧,y的值随x值的增大而减小,由题设可知,当x>1时,y的值随x值的增大而减小,∴抛物线y=-x2+2bx+c的对称轴应在直线x=1的左侧,而抛物线y=-x2+2bx+c的对称轴,即b≤1,故选择D.22(1)bxbD5.已知抛物线y=ax2+bx+c(a≠0)经过点(-1,0),且顶点在第一象限.有下列四个结论:①a<0;②a+b+c>0;③>0;④abc>0.其中正确的结论是________.①②③ab26.已知抛物线和直线l在同一直角坐标系中的图象如图所示,抛物线的对称轴为直线x=-1,P1(x1,y1),P2(x2,y2)是抛物线上的点,P3(x3,y3)是直线l上的点,且x3<-1<x1<x2,则y1,y2,y3的大小关系是()A.y1<y2<y3B.y2<y3<y1C.y3<y1<y2D.y2<y1<y3D7.如图,已知二次函数y=-x2+bx+c的图象经过A(2,0),B(0,-6)两点.(1)求这个二次函数的解析式;12解:(1)把A(2,0)、B(0,-6)代入y=-x2+bx+c得12-2+20,6,bcc4,6,bc∴这个二次函数的解析式为y=-x2+4x-6;解得12(2)设该二次函数图象的对称轴与x轴交于点C,连接BA、BC,求△ABC的面积.(2)∵该抛物线对称轴为直线x==4,∴点C的坐标为(4,0),∴AC=OC-OA=4-2=2,∴S△ABC=×AC×OB=×2×6=6.1212412()2课堂小结24(,)24bacbaa2bxa顶点:对称轴:y=ax2+bx+c(a≠0)(一般式)配方法公式法(顶点式)224()24bacbyaxaa最值:244acba

1 / 30
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功