2020届高考数学大二轮复习 刷题首选卷 第一部分 刷考点 考点五 程序框图课件 理

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

考点五程序框图第一部分刷考点A卷一、选择题1.(2019·全国卷Ⅰ)如图是求12+12+12的程序框图,图中空白框中应填入()A.A=12+AB.A=2+1AC.A=11+2AD.A=1+12A答案A解析对于选项A,A=12+A.当k=1时,A=12+12,当k=2时,A=12+12+12,故A正确;经验证选项B,C,D均不符合题意.故选A.2.(2019·湖北八校第二次联考)如图程序中,输入x=ln2,y=log32,z=12,则输出的结果为()A.xB.yC.zD.无法确定答案A解析图中程序的功能是输出x,y,z的最大值,因为ln31,所以y=log32=ln2ln3ln2=x,x=ln2lne=12=z,所以输出x.3.(2019·全国卷Ⅲ)执行如图所示的程序框图,如果输入的为0.01,则输出s的值等于()A.2-124B.2-125C.2-126D.2-127答案C解析=0.01,x=1,s=0,s=0+1=1,x=12,x不成立;s=1+12,x=14,x不成立;s=1+12+14,x=18,x不成立;s=1+12+14+18,x=116,x不成立;s=1+12+14+18+116,x=132,x不成立;s=1+12+14+18+116+132,x=164,x不成立;s=1+12+14+18+116+132+164,x=1128,x成立,此时输出s=2-126.故选C.4.(2019·山东临沂三模)秦九韶,中国古代数学家,对中国数学乃至世界数学的发展做出了杰出贡献.他所创立的秦几韶算法,直到今天,仍是多项式求值比较先进的算法.用秦九韶算法将f(x)=2019x2018+2018x2017+2017x2016+…+2x+1化为f(x)=(…((2019x+2018)x+2017)x+…+2)x+1再进行运算,计算f(x0)的值时,设计了如图所示的程序框图,则在◇和▭中可分别填入()A.n≥2和S=Sx0+nB.n≥2和S=Sx0+n-1C.n≥1和S=Sx0+nD.n≥1和S=Sx0+n-1答案C解析由题意可知,当n=1时程序循环过程应该继续进行,n=0时程序跳出循环,故判断框中应填入n≥1,由秦九韶算法的递推关系可知矩形框中应填入的递推关系式为S=Sx0+n,故选C.5.(2019·河南八市重点高中联考)相传黄帝时代,在制定乐律时,用“三分损益”的方法得到不同的竹管,吹出不同的音调.“三分损益”包含“三分损一”和“三分益一”,用现代数学的方法解释如下,“三分损一”是在原来的长度减去一分,即变为原来的三分之二;“三分益一”是在原来的长度增加一分,即变为原来的三分之四,如图的程序是与“三分损益”结合的计算过程,若输入的x的值为1,输出的x的值为()A.6481B.3227C.89D.1627答案B解析由题意,执行循环结构的程序框图,可得第1次循环:x=23,i=2,不满足判断条件;第2次循环:x=89,i=3,不满足判断条件;第3次循环:x=3227,i=4,满足判断条件,输出结果3227,故选B.6.(2019·辽宁丹东质量测试(一))计算机在数据处理时使用的是二进制,例如十进制数1,2,3,4的二进制数分别表示为1,10,11,100,二进制数…dcba化为十进制数的公式为…dcba=a·20+b·21+c·22+d·23+…,例如二进制数11等于十进制数1·20+1·21=3,又如二进制数101等于十进制数1·20+0·21+1·22=5,如图是某同学设计的将二进制数11111化为十进制数的程序框图,则判断框内应填入的条件是()A.i4B.i≤4C.i5D.i≤5答案B解析在将二进制数11111化为十进制数的程序中循环次数由循环变量i决定,∵11111共有5位,因此要循环4次才能完成整个转换过程,∴退出循环的条件根据程序框图和答案选项,应设为i≤4,故选B.7.(2019·黑龙江哈尔滨三中二模)我国古代名著《庄子·天下篇》中有一句名言“一尺之棰,日取其半,万世不竭”,其意思为:一尺的木棍,每天截取一半,永远都截不完.现将该木棍依此规律截取,如图所示的程序框图的功能就是计算截取20天后所剩木棍的长度(单位:尺),则①②③处可分别填入的是()A.i20,S=S-1i,i=2iB.i≤20,S=S-1i,i=2iC.i20,S=S2,i=i+1D.i≤20,S=S2,i=i+1答案D解析根据题意可知,截取1天后S=12,所以满足S=S2,不满足S=S-1i,故排除A,B,由框图可知,计算截取20天后的剩余时,有S=S2,且i=21,所以循环条件应该是i≤20.故选D.8.(2019·湖北重点中学高三起点考试)美索不达米亚平原是人类文明的发祥地之一.美索不达米亚人善于计算,他们创造了优良的计数系统,其中开平方算法是最具有代表性的.程序框图如图所示,若输入a,n,ξ的值分别为8,2,0.5,每次运算都精确到小数点后两位,则输出的结果为()A.2.81B.2.82C.2.83D.2.84答案D解析输入a=8,n=2,ξ=0.5,m=82=4,n=4+22=3,|4-3|=10.5;m=83≈2.67,n≈2.67+32≈2.84,|2.67-2.84|=0.170.5,输出的结果为2.84.二、填空题9.执行如图所示的程序框图,若输出的结果为12,则输入的实数x的值是________.答案2解析因为输出的结果为12,所以有log2x=12,x1或x-1=12,x≤1.解得x=2.所以输入的实数x的值为2.10.(2019·辽宁沈阳育才学校八模)我国古代名著《九章算术》用“更相减损术”求两个正整数的最大公约数是一个伟大创举.这个伟大创举与古希腊的算法——“辗转相除法”实质一样.如图的程序框图即源于“辗转相除法”,当输入a=288,b=123时,输出的a=________.答案3解析解法一:按照程序框图运行程序,输入:a=288,b=123,则r=42,a=123,b=42,不满足r=0,循环;则r=39,a=42,b=39,不满足r=0,循环;则r=3,a=39,b=3,不满足r=0,循环;则r=0,a=3,b=0,满足r=0,输出a=3.解法二:程序框图的功能为“辗转相除法”求解两个正整数的最大公约数,因为288与123的最大公约数为3,所以a=3.11.(2019·安徽A10联盟最后一卷)《九章算术》中有如下问题:“今有牛、羊、马食人苗,苗主责之粟五斗,羊主曰:‘我羊食半马.’马主曰:‘我马食半牛.’今欲衰偿之,问各出几何?”翻译为:今有牛、马、羊吃了别人的禾苗,禾苗主人要求赔偿5斗粟.羊主人说:“我羊所吃的禾苗只有马的一半.”马主人说“我马吃的禾苗只有牛的一半”打算按此比率偿还,问:牛、马、羊的主人各应赔偿多少粟?已知1斗=10升,针对这一问题,设计程序框图如图所示,若输出k的值为2,则m=________.答案507解析运行该程序,第一次循环,S=50-m,k=1;第二次循环,S=50-3m,k=2;第三次循环,S=50-7m,此时要输出k的值,则50-7m=0,解得m=507.12.(2019·湖北七校联盟期末)设a是一个各位数字都不是0且没有重复数字的三位数,将组成a的3个数字按从小到大排成的三位数记为I(a),按从大到小排成的三位数记为D(a)(例如a=746,则I(a)=467,D(a)=764),阅读如图所示的程序框图,运行相应的程序,若输入的a为123,则输出的b为________.答案495解析由程序框图,知第一次循环a=123,b=321-123=198;第二次循环a=198,b=981-189=792;第三次循环a=792,b=972-279=693;第四次循环a=693,b=963-369=594;第五次循环a=594,b=954-459=495;第六次循环a=495,b=954-459=495,满足条件a=b,跳出循环体,输出495.B卷一、选择题1.(2019·湖南衡阳三模)著名的“3n+1猜想”是对任何一个正整数进行规定的变换,最终都会变成1.如图的程序框图示意了“3n+1”猜想,则输出的n为()A.5B.6C.7D.8答案B解析a=10是偶数,a=5,n=1,a1,a=5是奇数,a=16,n=2,a1,a=16是偶数,a=8,n=3,a1,a=8是偶数,a=4,n=4,a1,a=4是偶数,a=2,n=5,a1,a=2是偶数,a=1,n=6,a≤1成立,输出n=6,故选B.2.(2019·福建高三检测)程大位是明代著名数学家,他的《新编直指算法统宗》是中国历史上一部影响巨大的著作.它问世后不久便风行宇内,成为明清之际研习数学者必读的教材,而且传到朝鲜、日本及东南亚地区,对推动汉字文化圈的数学发展起了重要的作用.卷八中第33问是:“今有三角果一垛,底阔每面七个,问该若干?”如图是解决该问题的程序框图.执行该程序框图,求得该垛果子的总数S为()A.120B.84C.56D.28答案B解析i=0,n=0,S=0;i=1,n=1,S=1,i≥7,否;i=2,n=3,S=1+3,i≥7,否;i=3,n=6,S=1+3+6,i≥7,否;i=4,n=10,S=1+3+6+10,i≥7,否;…i=7,n=28,S=1+3+6+10+15+21+28,i≥7,是;输出S=84.3.(2019·湖南长沙高三统考)若正整数N除以正整数m后的余数为r,则记为N=r(modm),例如10=2(mod4).如图所示程序框图的算法源于我国古代数学名著《孙子算经》中的“中国剩余定理”,则执行该程序框图输出的i等于()A.3B.9C.27D.81答案C解析第一次执行循环体,得i=3,N=14,此时14=2(mod3),但14≠1(mod7).第二次执行循环体,得i=9,N=23,此时23=2(mod3),但23≠1(mod7).第三次执行循环体,得i=27,N=50,此时50=2(mod3),且50=1(mod7),退出循环,所以输出i的值为27,故选C.4.(2019·江西九校重点中学协作体第一次联考)《九章算术》是中国古代数学专著,其中的“更相减损术”可以用来求两个数的最大公约数,即“可半者半之,不可半者,副置分母、子之数,以少减多,更相减损,求其等也,以等数约之.”翻译成现代语言如下:第一步,任意给定两个正整数,判断它们是否都是偶数,若是,用2约简;若不是,执行第二步;第二步,以较大的数减去较小的数,接着把所得的差与较小的数比较,并以大数减小数,继续这个操作,直到所得的数相等,则这个数(等数)或这个数与约简的数的乘积就是所求的最大公约数.现给出更相减损术的程序图如图所示,如果输入的a=114,b=30,则输出的n为()A.3B.6C.7D.8答案C解析∵a=114,b=30,满足a,b都是偶数,则a=a2=57,b=b2=15,k=2;不满足a,b都是偶数,且不满足a=b,满足ab,则a=57-15=42,n=1,不满足a=b,满足ab,则a=42-15=27,n=2,不满足a=b,满足ab,则a=27-15=12,n=3,不满足a=b,不满足ab,则c=12,a=15,b=12,则a=15-12=3,n=4,不满足a=b,不满足ab,则c=3,a=12,b=3,则a=12-3=9,n=5,不满足a=b,满足ab,则a=9-3=6,n=6,不满足a=b,满足ab,则a=6-3=3,n=7,满足a=b,结束循环,输出n=7,故选C.5.(2019·江西新八校第二次联考)如图所示的程序框图所实现的功能是()A.输入a的值,计算(a-1)×32021+1B.输入a的值,计算(a-1)×32020+1C.输入a的值,计算(a-1)×32019+1D.输入a的值,计算(a-1)×32018+1答案B解析由程序框图,可知a1=a,an+1=3an-2,由i的初值为1,末值为2019,可知,此递推公式共执行了2019+1=2020次,又由an

1 / 68
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功