2020届高考数学大二轮复习 冲刺创新专题 题型2 解答题 规范踩点 多得分 第5讲 概率与统计课件

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

第5讲概率与统计题型2解答题规范踩点多得分[考情分析]概率与统计通过统计图、古典概型、几何概型、线性相关与线性回归方程等知识考查数据处理能力.题目设置比较注重数学与生活的结合,属于中档题,难度适中.1热点题型分析PARTONE热点1统计图1.一表二图(1)频率分布表——数据详实;(2)频率分布直方图——分布直观;(3)频率分布折线图——便于观察总体分布趋势.2.茎叶图(1)茎叶图适用于数据较少的情况,从中便于看出数据的分布,以及中位数、众数等;(2)个位数为叶,十位数(或百位与十位)为茎,相同的数据重复写.3.条形图条形图是用条形的长度表示各类别频数(或频率)的多少,其宽度(表示类别)则是固定的.某城市100户居民的月平均用电量(单位:度),以[160,180),[180,200),[200,220),[220,240),[240,260),[260,280),[280,300]分组的频率分布直方图如图.(1)求直方图中x的值;(2)求月平均用电量的众数和中位数.解(1)由(0.002+0.0095+0.011+0.0125+x+0.005+0.0025)×20=1得x=0.0075,∴直方图中x的值为0.0075.(2)月平均用电量的众数是220+2402=230.∵(0.002+0.0095+0.011)×20=0.450.5,∴月平均用电量的中位数在[220,240)内,设中位数为a,则(0.002+0.0095+0.011)×20+0.0125×(a-220)=0.5,解得a=224,即中位数为224.1.频率分布直方图中需要注意的几点(1)直方图与条形图不同,直方图中的纵坐标是频率组距,每个小矩形的面积为频率;条形图的纵坐标为频数或频率;(2)各组频率之和为1,即所有小矩形的面积和为1;(3)直方图中各小矩形的高度比=各组频率比=各组频数比.2.与频率分布直方图相关问题的解题模板第一步:根据频率分布直方图计算出相应的频率;第二步:运用样本频率估计总体的频率;第三步:得出结论.3.解决与茎叶图相关问题时,一要弄清茎叶图中茎与叶的含义,不要混淆;二要注意看清所有的样本数据,弄清图中的数字特点,不要漏掉数据.随着新课程改革和高考综合改革的实施,高中教学以发展学生学科核心素养为导向,学习评价更关注学科核心素养的形成和发展.为此,某市于2018年举行第一届高中数学学科素养竞赛,竞赛结束后,为了评估该市高中学生的数学学科素养,从所有参赛学生中随机抽取1000名学生的成绩(单位:分)作为样本进行估计,将抽取的成绩整理后分成五组,依次记为[50,60),[60,70),[70,80),[80,90),[90,100],并绘制成如图所示的频率分布直方图.(1)请补全频率分布直方图,并估计这1000名学生成绩的平均数(同一组数据用该组区间的中点值作代表);(2)该市决定对本次竞赛成绩排在前180名的学生给予表彰,授予“数学学科素养优秀标兵”称号,一名学生本次竞赛成绩为79分,请你判断该学生能否被授予“数学学科素养优秀标兵”称号.解(1)成绩在[60,70)的频率为1-(0.30+0.15+0.10+0.05)=0.40,补全的频率分布直方图如图:样本的平均数x-=55×0.30+65×0.40+75×0.15+85×0.10+95×0.05=67.(2)因为1801000=0.18,所以由频率分布直方图可以估计获得“数学学科素养优秀标兵”称号学生的最低成绩为80-0.18-0.05-0.100.015=78(分).因为7978,所以该同学能被授予“数学学科素养优秀标”称号.热点2概率统计1.古典概型P(A)=事件A所包含的基本事件数基本事件总数.2.几何概型P(A)=构成事件A的区域长度面积或体积试验的全部结果所构成的区域长度面积或体积.3.当事件A与B互斥时,满足加法公式:P(A∪B)=P(A)+P(B).4.若事件A与B为对立事件,则P(A)=1-P(B),即P(A)=1-P(A).(2019·四川省成都模拟)某学校为担任班主任的教师办理手机语音月卡套餐,为了解通话时长,采用随机抽样的方法,得到该校100位班主任每人的月平均通话时长T(单位:分钟)的数据,其频率分布直方图如图所示,将频率视为概率.(1)求图中m的值;(2)估计该校担任班主任的教师月平均通话时长的中位数;(3)在[450,500),[500,550]这两组中采用分层抽样的方法抽取6人,再从这6人中随机抽取2人,求抽取的2人恰在同一组的概率.解(1)依题意,根据频率分布直方图的性质,可得:50×(m+0.0040+0.0050+0.0066+0.0016+0.0008)=1,解得m=0.0020.(2)设该校担任班主任的教师月平均通话时长的中位数为t.因为前2组的频率之和为(0.0020+0.0040)×50=0.30.5,前3组的频率之和为(0.0020+0.0040+0.0050)×50=0.550.5,所以350t400,由0.3+0.0050×(t-350)=0.5,得t=390.所以该校担任班主任的教师月平均通话时长的中位数为390.(3)由题意,可得在[450,500)内抽取6×0.00160.0016+0.0008=4人,分别记为a,b,c,d,在[500,550]内抽取2人,记为e,f,则6人中抽取2人的取法有:{a,b},{a,c,},{a,d},{a,e},{a,f},{b,c},{b,d},{b,e},{b,f},{c,d},{c,e},{c,f},{d,e},{d,f},{e,f},共15种等可能的取法.其中抽取的2人恰在同一组的有{a,b},{a,c},{a,d},{b,c},{b,d},{c,d},{e,f},共7种取法,所以从这6人中随机抽取的2人恰在同一组的概率P=715.求解概率与统计综合题的两点注意:(1)明确频率与概率的关系,频率可近似替代概率;(2)此类问题中的概率模型多是古典概型,在求解时,要明确基本事件的构成,并判断所述试验的所有基本事件是否为等可能的.(2019·西南名校联盟联考)某种产品的质量按照其质量指标值M进行等级划分,具体如下表:质量指标值MM8080≤M110M≥110等级三等品二等品一等品现从某企业生产的这种产品中随机抽取了100件作为样本,对其质量指标值M进行统计分析,得到如图所示的频率分布直方图.(1)记A表示事件“一件这种产品为二等品或一等品”,试估计事件A的概率;(2)已知该企业的这种产品每件一等品、二等品、三等品的利润分别为10元、6元、2元,试估计该企业销售10000件该产品的利润;(3)根据该产品质量指标值M的频率分布直方图,求质量指标值M的中位数的估计值(精确到0.01).解(1)记B表示事件“一件这种产品为二等品”,C表示事件“一件这种产品为一等品”,则事件B,C互斥,且由频率分布直方图估计P(B)=0.2+0.3+0.15=0.65,P(C)=0.1+0.09=0.19,又P(A)=P(B+C)=P(B)+P(C)=0.84,所以事件A的概率估计为0.84.(2)由(1)知,任取一件产品是一等品、二等品的概率估计值分别为0.19,0.65,故任取一件产品是三等品的概率估计值为0.16,从而10000件产品估计有一等品、二等品、三等品分别为1900,6500,1600件,故利润估计为1900×10+6500×6+1600×2=61200元.(3)因为在产品质量指标值M的频率分布直方图中,质量指标值M90的频率为0.06+0.1+0.2=0.360.5,质量指标值M100的频率为0.06+0.1+0.2+0.3=0.660.5,故质量指标值M的中位数估计值为90+0.5-0.360.03≈94.67.热点3线性回归分析与独立性检验1.线性回归方程方程y^=b^x+a^称为线性回归方程,利用最小二乘法估计公式中的斜率和截距分别为b^=∑ni=1xiyi-nx-y-∑ni=1x2i-nx-2,a^=y--b^x-,其中(x-,y-)是样本点的中心,且回归直线恒过该点.2.独立性检验根据2×2列联表,计算随机变量K2=a+b+c+dad-bc2a+bc+da+cb+d(K2也可以表示为χ2),当K23.841时,则有95%的把握说两个事件有关;当K26.635时,则有99%的把握说两个事件有关.具体参考数据如下表:P(K2≥k0)0.500.400.250.150.100.050.0250.0100.0050.001k00.4550.7081.3232.0722.7063.8415.0246.6357.87910.8281.某地随着经济的发展,居民收入逐年增长,下表是该地一建设银行连续五年的储蓄存款(年底余额),如下表1:表1年份x20132014201520162017储蓄存款y(千亿元)567810为了研究计算的方便,工作人员将上表的数据进行了处理,t=x-2012,z=y-5得到下表2:表2时间代号t12345z01235(1)求z关于t的线性回归方程;(2)通过(1)中的方程,求出y关于x的回归方程;(3)用所求回归方程预测到2022年年底,该地储蓄存款额可达多少?(附:对于线性回归方程y^=b^x+a^,其中b^=∑ni=1xiyi-nx-y-∑ni=1x2i-nx-2,a^=y--b^x-)解(1)t=3,z-=2.2,∑5i=1tizi=45,∑5i=1t2i=55,b^=45-5×3×2.255-5×9=1.2,a^=z--b^t=2.2-3×1.2=-1.4,所以z^=1.2t-1.4.(2)将t=x-2012,z=y-5,代入z^=1.2t-1.4,得y-5=1.2(x-2012)-1.4,即y^=1.2x-2410.8.(3)因为y^=1.2×2022-2410.8=15.6,所以预测到2022年年底,该地储蓄存款额可达15.6千亿元.2.(2019·全国卷Ⅰ)某商场为提高服务质量,随机调查了50名男顾客和50名女顾客,每位顾客对该商场的服务给出满意或不满意的评价,得到下面列联表:满意不满意男顾客4010女顾客3020(1)分别估计男、女顾客对该商场服务满意的概率;(2)能否有95%的把握认为男、女顾客对该商场服务的评价有差异?附:K2=nad-bc2a+bc+da+cb+d.解(1)由调查数据,男顾客中对该商场服务满意的比率为4050=0.8,因此男顾客对该商场服务满意的概率的估计值为0.8.女顾客中对该商场服务满意的比率为3050=0.6,因此女顾客对该商场服务满意的概率的估计值为0.6.(2)K2的观测值k=100×40×20-30×10250×50×70×30≈4.762.由于4.7623.841,故有95%的把握认为男、女顾客对该商场服务的评价有差异.1.线性回归模型是回归模型中的核心问题,判断两个变量是否线性相关及相关程度通常有两种方法:一是根据散点图直观判断;二是将相关数据代入相关系数公式求出r,然后根据r的大小进行判断.2.求线性回归直线的关键:一是根据公式准确计算出b^,a^的值;二是抓住样本点的中心(x-,y-)必在回归直线上.3.求解独立性检验问题时要注意:一是2×2列联表中的数据与公式中各个字母的对应,不能混淆;二是注意计算得到K2之后的结论,即K2的观测值k越大,对应假设事件H0成立(两类变量相互独立)的概率越小,H0不成立的概率越大.(2018·全国卷Ⅱ)下图是某地区2000年至2016年环境基础设施投资额y(单位:亿元)的折线图.为了预测该地区2018年的环境基础设施投资额,建立了y与时间变量t的两个线性回归模型.根据2000年至2016年的数据(时间变量t的值依次为1,2,…,17)建立模型①:y^=-30.4+13.5t;根据2010年至2016年的数据(时间变量t的值依次为1,2,…,7)建立模型②:y^=99+17.5t.(1)分别利用这两个

1 / 67
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功