2020届高考数学大二轮复习 冲刺创新专题 题型1 选填题 练熟练稳 少丢分 第15讲 概率与统计课

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

第15讲概率与统计题型1选填题练熟练稳少丢分[考情分析]统计的主要内容包括随机抽样、用样本估计总体、变量的相关关系;概率部分以考查古典(几何)概型、互斥事件、对立事件等为主,主要以选择或填空的方式呈现,多为低、中档题目.1热点题型分析PARTONE热点1抽样方法与用样本估计总体1.抽样方法2.样本的数字特征(1)众数:在样本数据中,出现次数最多的那个数据;(2)中位数:样本数据中,将数据按大小排列,位于最中间的一个或两个数据的平均数,是样本数据的“中心点”;(3)平均数:样本数据的算术平均数,即x-=1n(x1+x2+…+xn),是样本数据的平均水平;(4)方差与标准差:是样本数据到平均数的一种平均距离,表示样本数据的离散程度,标准差(方差)越大,数据的离散程度越大;标准差(方差)越小,数据的离散程度越小.方差:s2=1n[(x1-x-)2+(x2-x-)2+…+(xn-x-)2];标准差:s=1n[x1-x-2+x2-x-2+…+xn-x-2].3.直方图的两个结论(1)小长方形的面积=组距×频率组距=频率;(2)各小长方形的面积之和等于1.4.直方图与众数、中位数和平均数的关系(1)众数:是直方图中最高矩形的底边中点横坐标;(2)中位数:是直方图中平分所有矩形面积和,且垂直于横轴的直线与横轴交点的横坐标;(3)平均数:是每个小矩形的面积乘以小矩形底边中点的横坐标之和.1.(2019·东三省三校一模)如图是某居民小区年龄在20岁到45岁的居民上网情况的频率分布直方图,现已知年龄在[30,35),[35,40),[40,45]的上网人数呈现递减的等差数列,且年龄在[30,35)的频率为0.3,则由此频率分布直方图估计该小区在20岁到45岁的居民上网年龄的()A.平均数为32.5B.众数为32.25C.中位数为953D.在[40,45]的频率为0.15答案C解析由题意可知[20,25),[25,30),[30,35)的频率分别为0.05,0.35,0.3.设[35,40),[40,45]的频率分别为a,b.因为已知年龄在[30,35),[35,40),[40,45]的上网人数呈现递减的等差数列,所以他们的频率也成递减的等差数列,则有a+b=0.3且2a=b+0.3,解得a=0.2,b=0.1,故选项D不正确;居民上网年龄的平均数为22.5×0.05+27.5×0.35+32.5×0.3+37.5×0.2+42.5×0.1=32.25,所以A不正确;根据众数和直方图的关系,可得上网年龄的众数为27.5,故B不正确;由前面计算可知中位数在[30,35)组中,设中位数为x,则x-305=0.10.3,解得x=953,故选C.2.一个总体中的100个个体的号码分别为0,1,2,…,99,并依次将其分为10个小组,组号为0,1,2,…,9.要用系统抽样方法抽取一个容量为10的样本,规定如果在第0组随机抽取的号码为m,那么依次错位地得到后面各组的号码,即第k组(k=1,2,…,9)中抽取的号码个位数字为m+k或m+k-10(如果m+k≥10),当m=5时,第8组抽取的号码为________.答案83解析因为m=5,k=8,则m+k=13,则第8组中抽取号码的个位数字为m+k-10=3,所以第8组抽取的号码为83.3.(2019·江苏高考)已知一组数据6,7,8,8,9,10,则该组数据的方差是________.解析这组数据的平均数为8,故方差为s2=16×[(6-8)2+(7-8)2+(8-8)2+(8-8)2+(9-8)2+(10-8)2]=53.答案531.对于以统计图为载体的概率与统计问题,认真观察图表,从中提取有用信息和数据是解题关键.特别是利用频率直方图解题时,常把直方图的高误认为是频率而导致错误.因此,应注意每个小矩形的面积为频率,所有面积和为1.对于第1题这类,利用直方图考查众数、中位数和平均数的问题,关键在于相应的计算公式是否掌握,特别是中位数问题,找准中位数所在的区间是解题关键;2.对于抽样方法的问题,要明确总体的基本特征符合哪种抽样特点.对于系统抽样通常是等距抽样,但也有例外情况,如第2题给出的规则即为每组号码错后一位,如果还按照等距原则计算,就会出现错解85.因此解决系统抽样的问题时,要认真审题,分析题目给出的抽取规则,按照规则进行抽样;3.对于样本的数字特征的一系列问题(如第3题),解题关键在于计算公式的准确使用和计算准确,应掌握简便运算的方法,减小计算量,提高准确率.热点2统计案例1.线性回归方程方程y^=b^x+a^称为线性回归方程,利用最小二乘法估计公式斜率和截距分别为b^=i=1nxi-x-yi-y-i=1nxi-x-2=i=1nxiyi-nx-y-i=1nx2i-nx-2,a^=y--b^x-,其中(x-,y-)是样本点的中心,且回归直线恒过该点.2.相关系数r=i=1nxi-x-yi-y-i=1nxi-x-2i=1nyi-y-2,当r0时,表明变量x与y正相关,r0时,表明变量x与y负相关.若|r|∈[0.75,1]时,相关性很强;|r|∈[0.3,0.75)时,相关性一般;|r|∈[0,0.25]时,相关性较弱.3.残差分析R2=1-i=1nyi-y^i2i=1nyi-y-2,当R2越大时,残差平方和i=1n(yi-y^i)2越小,拟合效果越好;当R2越小时,残差平方和越大,拟合效果越差.4.独立性检验随机变量K2=a+b+c+dad-bc2a+bc+da+cb+d(K2也可以表示为χ2),当K23.841时,则有95%的把握说两个事件有关;当K26.635时,则有99%的把握说两个事件有关.1.(2019·衡水中学调研)已知变量x,y之间的线性回归方程为y^=-0.7x+10.3,且变量x,y之间的一组相关数据如下表所示,则下列说法错误的是()x681012y6m32A.变量x,y之间呈负相关关系B.可以预测,当x=20时,y^=-3.7C.m=4D.该回归直线必过点(9,4)答案C解析由题意得,由-0.70,得变量x,y之间呈负相关,故A正确;当x=20时,则y^=-0.7×20+10.3=-3.7,故B正确;由数据表格可知x-=14×(6+8+10+12)=9,y-=14×(6+m+3+2)=11+m4,则11+m4=-0.7×9+10.3,解得m=5,故C错误;由数据表易知,样本点中心为(9,4),故D正确.故选C.2.为了判断高中三年级学生选修文科是否与性别有关,现随机抽取50名学生,得到如图所示2×2列联表:理科文科总计男131023女72027总计203050已知P(K2≥3.841)≈0.05,P(K2≥5.024)≈0.025.根据表中数据,得到K2的观测值k=50×13×20-10×7223×27×20×30≈4.844,则有________的把握认为选修文科与性别有关.解析由题意,K2=50×13×20-10×7223×27×20×30≈4.844,因为4.8443.841,所以有95%的把握认为选修文科与性别有关.答案95%1.线性回归分析是对有相关关系的两个变量进行统计分析的方法,只有在散点图大致呈线性时,求出的线性回归方程才有实际意义;同时,根据回归方程预测仅是一个预测值,而不是真实发生的值.2.独立检验得出的结论是带有概率性质的,只能说结论成立的概率有多大,而不能完全肯定一个结论,因此才出现了临界值表.在分析问题时一定要注意不可对某个问题下确定性结论,否则就可能对统计计算的结果做出错误的解释.1.古典概型P(A)=事件A所包含的基本事件数基本事件总数.2.几何概型P(A)=构成事件A的区域长度面积或体积试验的全部结果所构成的区域长度面积或体积.1.(2019·全国卷Ⅲ)两位男同学和两位女同学随机排成一列,则两位女同学相邻的概率是()A.16B.14C.13D.12答案D解析设两位男同学分别为A,B,两位女同学分别为a,b,则用“树形图”表示四位同学排成一列所有可能的结果如图所示.由图知,共有24种等可能的结果,其中两位女同学相邻的结果(画“”的情况)共有12种,故所求概率为1224=12.故选D.2.(2019·西安调研)若函数f(x)=ex,0≤x<1,lnx+e,1≤x≤e,在区间[0,e]上随机取一个实数x,则f(x)的值不小于常数e的概率是()A.1eB.1-1eC.e1+eD.11+e答案B解析当0≤x1时,恒有f(x)=exe,不满足题意.当1≤x≤e时,f(x)=lnx+e.由lnx+e≥e,得1≤x≤e.∴所求事件的概率P=e-1e=1-1e.1.运用古典概型和几何概型计算公式的前提,是当所述试验的所有基本事件是等可能的.2.几何概型的考查重点是几何测度的选择,通常为长度、面积、体积、弧长、夹角等.2真题自检感悟PARTTWO1.(2018·全国卷Ⅰ)右图来自古希腊数学家希波克拉底所研究的几何图形.此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC的斜边BC,直角边AB,AC.△ABC的三边所围成的区域记为Ⅰ,黑色部分记为Ⅱ,其余部分记为Ⅲ.在整个图形中随机取一点,此点取自Ⅰ,Ⅱ,Ⅲ的概率分别记为p1,p2,p3,则()A.p1=p2B.p1=p3C.p2=p3D.p1=p2+p3答案A解析不妨取AB=AC=2,则BC=22,所以区域Ⅰ的面积为S△ABC=2;区域Ⅲ的面积为π-2;区域Ⅱ的面积为π-(π-2)=2,所以根据几何概型的概率公式,易得p1=p2,故选A.2.(2018·全国卷Ⅱ)我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如30=7+23.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是()A.112B.114C.115D.118答案C解析不超过30的素数有2,3,5,7,11,13,17,19,23,29,共10个,随机选取两个不同的数,共有45种方法,因为7+23=11+19=13+17=30,所以随机选取两个不同的数,其和等于30的有3种方法,故概率为345=115,选C.3.(2019·全国卷Ⅱ)生物实验室有5只兔子,其中只有3只测量过某项指标.若从这5只兔子中随机取出3只,则恰有2只测量过该指标的概率为()A.23B.35C.25D.15答案B解析设5只兔子中测量过某项指标的3只为a1,a2,a3,未测量过这项指标的2只为b1,b2,则从5只兔子中随机取出3只的所有可能情况为(a1,a2,a3),(a1,a2,b1),(a1,a2,b2),(a1,a3,b1),(a1,a3,b2),(a1,b1,b2),(a2,a3,b1),(a2,a3,b2),(a2,b1,b2),(a3,b1,b2),共10种可能.其中恰有2只测量过该指标的情况为(a1,a2,b1),(a1,a2,b2),(a1,a3,b1),(a1,a3,b2),(a2,a3,b1),(a2,a3,b2),共6种可能.故恰有2只测量过该指标的概率为610=35.故选B.4.(2019·江苏高考)从3名男同学和2名女同学中任选2名同学参加志愿者服务,则选出的2名同学中至少有1名女同学的概率是________.答案710解析解法一:设3名男同学分别为A,B,C,2名女同学分别为a,b,则所有等可能事件分别为AB,AC,Aa,Ab,BC,Ba,Bb,Ca,Cb,ab,共10个,选出的2名同学中至少有1名女同学包含的基本事件分别为Aa,Ab,Ba,Bb,Ca,Cb,ab,共7个,故所求概率为710.解法二:同解法一,得所有等可能事件共10个,选出的2名同学中没有女同学包含的基本事件分别为AB,AC,BC,共3个,故所求概率为1-310=710.3专题作业PARTTHREE一、选择题1.(2019·银川二模)某对夫妇计划生育3个孩子,则这个家庭

1 / 73
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功