第六章动量动量守恒定律核心素养提升——科学思维系列(六)应用“柱体微元”模型解决连续流体问题模型1流体类问题某游乐园入口旁有一喷泉,喷出的水柱将一质量为M的卡通玩具稳定地悬停在空中.为计算方便起见,假设水柱从横截面积为S的喷口持续以速度v0竖直向上喷出;玩具底部为平板(面积略大于S);水柱冲击到玩具底板后,在竖直方向水的速度变为零,在水平方向朝四周均匀散开.忽略空气阻力.已知水的密度为ρ,重力加速度大小为g.求(1)喷泉单位时间内喷出的水的质量;(2)玩具在空中悬停时,其底面相对于喷口的高度.【解析】(1)在刚喷出一段很短的Δt时间内,可认为喷出的水柱保持速度v0不变该时间内,喷出水柱高度Δl=v0Δt①喷出水柱质量Δm=ρΔV②其中ΔV为水柱体积,满足ΔV=ΔlS③由①②③可得:喷泉单位时间内喷出的水的质量为ΔmΔt=ρv0S(2)设玩具底面相对于喷口的高度为h由玩具受力平衡得F冲=Mg④其中,F冲为水柱对玩具底部柱的作用力由牛顿第三定律知F压=F冲⑤其中,F压为玩具底部对水柱的作用力,v′为水柱到达玩具底部时的速度由运动学公式得v′2-v20=-2gh⑥在很短Δt时间内,冲击玩具水柱的质量为ΔmΔm=ρv0SΔt⑦由题意可知,在竖直方向上,对该部分水柱应用动量定理得-(F压+Δmg)Δt=-Δmv′⑧由于Δt很小,Δmg也很小,可以忽略,⑧式变为F压Δt=Δmv′⑨由④⑤⑥⑦⑨可得h=v202g-M2g2ρ2v20S2【答案】(1)ρv0S(2)v202g-M2g2ρ2v20S2模型2微粒类问题如图所示,自动称米机已在许多大粮店广泛使用.买者认为:因为米流落到容器中时对容器有向下的冲力而不划算;卖者则认为:当预定米的质量达到要求时,自动装置即刻切断米流,此刻有一些米仍在空中,这些米是多给买者的,因而双方争执起来.下列说法正确的是()CA.买者说的对B.卖者说的对C.公平交易D.具有随机性,无法判断【解析】设米流的流量为d,它是恒定的,米流在出口处速度很小可视为零,若切断米流后,设盛米的容器中静止的那部分米的质量为m1,空中还在下落的米的质量为m2,落到已静止的米堆上的一小部分米的质量为Δm.在极短时间Δt内,取Δm为研究对象,这部分米很少,Δm=d·Δt,设其落到米堆上之前的速度为v,经Δt时间静止,如图所示,取竖直向上为正方向,由动量定理得(F-Δmg)Δt=Δmv即F=dv+d·Δt·g,因Δt很小,故F=dv根据牛顿第三定律知F=F′,称米机的读数应为M=Ng=m1g+F′g=m1+dvg因切断米流后空中尚有t=vg时间内对应的米流在空中,故dvg=m2,可见,称米机读数包含了静止在袋中的那部分米的质量m1,也包含了尚在空中的下落的米的质量m2,即自动称米机是准确的,不存在哪方划算不划算的问题,选项C正确.(2019·百色二模)使用高压水枪作为切割机床的切刀具有独特优势,得到广泛应用,如图所示,若水柱截面为S,水流以速度v垂直射到被切割的钢板上,之后水速减为零,已知水的密度为ρ,则水对钢板的冲力为()BA.ρSvB.ρSv2C.12ρSv2D.12ρSv解析:设t时间内有体积为V的水打在钢板上,则这些水的质量为m=ρV=ρSvt,以这部分水为研究对象,它受到钢板的作用力为F,以水运动的方向为正方向,由动量定理有Ft=0-mv,即F=-mvt=-ρSv2,负号表示水受到的作用力的方向与水运动的方向相反;由牛顿第三定律得,水对钢板的冲击力大小为F′=ρSv2,故B项正确,A项、C项、D项均错误.