配套课时作业1.数列{an}的通项公式为an=1n+n+1,若{an}的前n项和为24,则n=()A.25B.576C.624D.625解析an=n+1-n,所以Sn=(2-1)+(3-2)+…+(n+1-n)=n+1-1,令Sn=24得n=624.故选C.解析答案C答案2.已知数列{an}中的前n项和Sn=n(n-9),第k项满足7ak10,则k等于()A.7B.8C.9D.10解析当k≥2时,ak=Sk-Sk-1=k2-9k-(k-1)2+9(k-1)=2k-10,k=1时也适合.由7<ak<10,得7<2k-10<10,所以172<k<10,所以k=9.故选C.解析答案C答案3.(2019·铜川模拟)已知等比数列{an}的前n项和为Sn,S3=a2+10a1,a5=9,则a1=()A.13B.-13C.19D.-19解析由题知公比q≠1,则S3=a11-q31-q=a1q+10a1,得q2=9,又a5=a1q4=9,则a1=19,故选C.解析答案C答案4.已知数列{an}的通项公式为an=ncosnπ2,其前n项和为Sn,则S2019=()A.0B.-1010C.504D.1008解析由an=ncosnπ2,得a1=0,a2=-2,a3=0,a4=4,a5=0,a6=-6,a7=0,a8=8,…,由此可知a1+a2+a3+a4=a5+a6+a7+a8=…=2.因为2019=4×504+3,所以S2019=2×504+a2017+a2018+a2019=1008+0-2018+0=-1010.故选B.解析答案B答案5.(2017·全国卷Ⅲ)等差数列an的首项为1,公差不为0.若a2,a3,a6成等比数列,则an前6项的和为()A.-24B.-3C.3D.8解析由已知条件可得a1=1,d≠0,由a23=a2a6可得(1+2d)2=(1+d)(1+5d),解得d=-2.所以S6=6×1+6×5×-22=-24.故选A.解析答案A答案6.(2019·山西广灵一中模拟)公比不为1的等比数列{an}的前n项和为Sn,且-3a1,-a2,a3成等差数列.若a1=1,则S4=()A.-20B.0C.7D.40解析设等比数列{an}的公比为q(q≠1).因为-3a1,-a2,a3成等差数列且a1=1,所以-3+q2=-2q,即q2+2q-3=0,解得q=-3.所以S4=1--341+3=-804=-20.故选A.解析答案A答案7.数列1,1+2,1+2+4,…,1+2+22+…+2n-1,…的前n项和Sn1020,那么n的最小值是()A.7B.8C.9D.10解析an=1+2+22+…+2n-1=2n-1.∴Sn=(21-1)+(22-1)+…+(2n-1)=(21+22+…+2n)-n=2n+1-n-2,∴S9=10131020,S10=20361020,∴Sn1020,n的最小值是10.解析答案D答案8.(2019·长郡中学模拟)已知数列{an}是公差不为0的等差数列,且满足a24+a25=a26+a27,则该数列的前10项和S10=()A.-10B.-5C.0D.5解析设等差数列的公差为d(d≠0),因为a24+a25=a26+a27,所以(a4-a6)(a4+a6)=(a7-a5)(a7+a5),所以-2d·a5=2d·a6,于是a5+a6=0,所以S10=10a1+a102=5(a5+a6)=0.故选C.解析答案C答案9.(2019·广州模拟)在数列{an}中,已知a1+a2+…+an=2n-1,则a21+a22+…+a2n=()A.(2n-1)2B.2n-123C.4n-1D.4n-13答案D答案解析由题意得,当n=1时,a1=1,当n≥2时,a1+a2+…+an-1=2n-1-1,则an=2n-1-(2n-1-1)=2n-1(n≥2),n=1时也成立,所以an=2n-1,则a2n=22n-2,所以数列{a2n}为首项为1,公比为4的等比数列,所以a21+a22+…+a2n=1×1-4n1-4=4n-13.故选D.解析10.(2019·福建宁德联考)数列{an}满足a1=1,且对任意的m,n∈N*都有am+n=am+an+mn,则1a1+1a2+…+1a20等于()A.4021B.2021C.1910D.2019答案A答案解析因为数列{an}满足a1=1,且对任意的m,n∈N*都有am+n=am+an+mn,所以令m=1,得an+1-an=1+n,所以an=(an-an-1)+…+(a2-a1)+a1=n+(n-1)+…+2+1=nn+12,所以1an=21n-1n+1,所以1a1+1a2+…+1a20=2×1-12+12-13+…+120-121=2×1-121=4021.故选A.解析11.(2019·金版创新)已知数列{an}的前n项和为Sn,a1=1,当n≥2时,an+2Sn-1=n,则S2019的值为()A.1009B.1010C.2018D.2019解析因为an+2Sn-1=n,n≥2,所以an+1+2Sn=n+1,n≥1,两式相减得an+1+an=1,n≥2.又a1=1,所以S2019=a1+(a2+a3)+…+(a2018+a2019)=1010.故选B.解析答案B答案12.(2019·河南百校联盟质检)已知正项数列{an}中,a1=1,a2=2,2a2n=a2n-1+a2n+1(n≥2),bn=1an+an+1,记数列{bn}的前n项和为Sn,则S33的值是()A.311B.33C.42D.3答案D答案解析∵2a2n=a2n-1+a2n+1(n≥2),∴数列{a2n}为等差数列,其首项为1,公差为22-1=3.∴a2n=1+3(n-1)=3n-2.∵an0,∴an=3n-2,∴bn=1an+an+1=13n-2+3n+1=13(3n+1-3n-2),故数列{bn}的前n项和为Sn=13[(4-1)+(7-4)+…+(3n+1-3n-2)]=13×(3n+1-1).∴S33=13×(3×33+1-1)=3.故选D.解析13.已知数列{an}满足an=1+2+3+…+nn,则数列1anan+1的前n项和为________.答案2nn+2答案解析an=1+2+3+…+nn=n+12,1anan+1=4n+1n+2=41n+1-1n+2,所求的前n项和为412-13+13-14+…+1n+1-1n+2=412-1n+2=2nn+2.解析14.(2019·海口模拟)等比数列{an}的各项均为实数,其前n项和为Sn.已知S3=74,S6=634,则a8=________.解析设等比数列{an}的公比为q,则由S6≠2S3,得q≠1,则S3=a11-q31-q=74,S6=a11-q61-q=634,解得q=2,a1=14,则a8=a1q7=14×27=32.解析答案32答案15.(2019·郑州模拟)设数列{an}的通项公式为an=2n-10(n∈N*),则|a1|+|a2|+…+|a15|=________.解析由an=2n-10(n∈N*)知,{an}是以-8为首项,2为公差的等差数列,又由an=2n-10≥0,得n≥5,所以当n5时,an0,当n≥5时,an≥0,所以|a1|+|a2|+…+|a15|=-(a1+a2+a3+a4)+(a5+a6+…+a15)=20+110=130.解析答案130答案16.(2019·保定模拟)设数列{an}的前n项和为Sn,且a1=1,an+an+1=12n(n=1,2,3,…),则S2n+3=________.解析依题意得S2n+3=a1+(a2+a3)+(a4+a5)+…+(a2n+2+a2n+3)=1+14+116+…+14n+1=1-14n+21-14=431-14n+2.解析答案431-14n+2答案17.(2019·山东莱阳模拟)已知各项均为正数的数列{an}的前n项和为Sn,对∀n∈N*,有2Sn=a2n+an.(1)求数列{an}的通项公式;(2)令bn=1anan+1+an+1an,设{bn}的前n项和为Tn,求证:Tn1.解(1)当n=1时,2a1=a21+a1,得a1=1或0(舍去).当n≥2时,因为2Sn=a2n+an,①所以2Sn-1=a2n-1+an-1,②由①②两式相减得an-an-1=1(n≥2),所以数列{an}是以1为首项,1为公差的等差数列,所以an=n,n∈N*.答案(2)证明:由(1)得bn=1anan+1+an+1an=1nn+1+n+1n=1nn+1n+1+n=n+1-nnn+1n+1+nn+1-n答案=n+1-nnn+1=1n-1n+1,所以Tn=b1+b2+b3+…+bn=1-12+12-13+13-14+…+1n-1n+1=1-1n+11.答案18.(2018·天津高考)设{an}是等比数列,公比大于0,其前n项和为Sn(n∈N*),{bn}是等差数列.已知a1=1,a3=a2+2,a4=b3+b5,a5=b4+2b6.(1)求{an}和{bn}的通项公式;(2)设数列{Sn}的前n项和为Tn(n∈N*).①求Tn;②证明k=1nTk+bk+2bkk+1k+2=2n+2n+2-2(n∈N*).解(1)设等比数列{an}的公比为q.由a1=1,a3=a2+2,可得q2-q-2=0.因为q0,可得q=2,故an=2n-1.设等差数列{bn}的公差为d.由a4=b3+b5,可得b1+3d=4.由a5=b4+2b6,可得3b1+13d=16,从而b1=1,d=1,故bn=n.所以数列{an}的通项公式为an=2n-1,数列{bn}的通项公式为bn=n.答案(2)①由(1),有Sn=1-2n1-2=2n-1,故Tn=k=1n(2k-1)=k=1n2k-n=2×1-2n1-2-n=2n+1-n-2.②证明:因为Tk+bk+2bkk+1k+2=2k+1-k-2+k+2kk+1k+2=k·2k+1k+1k+2=2k+2k+2-2k+1k+1,所以k=1nTk+bk+2bkk+1k+2=233-222+244-233+…+2n+2n+2-2n+1n+1=2n+2n+2-2.答案19.设数列{an}的前n项和为Sn,对任意的正整数n,都有Sn=2an+n-3成立.(1)求证:数列{an-1}为等比数列;(2)求数列{nan}的前n项和Tn.解(1)证明:当n=1时,S1=2a1+1-3,得a1=2,由Sn=2an+n-3得Sn+1=2an+1+n+1-3,两式相减得an+1=2an+1-2an+1,即an+1=2an-1,∴an+1-1=2(an-1),而a1-1=1,∴数列{an-1}是首项为1,公比为2的等比数列.答案(2)由(1)得an-1=1·2n-1=2n-1,即an=2n-1+1,nan=n(2n-1+1)=n·2n-1+n,∴Tn=(1×20+1)+(2×21+2)+(3×22+3)+…+(n·2n-1+n)=(1×20+2×21+3×22+…+n·2n-1)+(1+2+3+…+n)=(1×20+2×21+3×22+…+n·2n-1)+nn+12.令Vn=1×20+2×21+3×22+…+n·2n-1,则2Vn=1×21+2×22+3×23+…+n·2n,答案两式相减得-Vn=1+21+22+…+2n-1-n·2n=1×1-2n1-2-n·2n=2n-1-n·2n,∴Vn=n·2n-2n+1=(n-1)2n+1,∴Tn=(n-1)