第4讲随机事件与古典概型第十章计数原理、概率、随机变量及其分布1.概率与频率(1)在相同的条件S下重复n次试验,观察某一事件A是否出现,称n次试验中事件A出现的次数nA为事件A出现的频数,称事件A出现的比例fn(A)=____为事件A出现的频率.(2)对于给定的随机事件A,由于事件A发生的频率fn(A)随着试验次数的增加稳定于概率P(A),因此可以用___________来估计概率P(A).nAn频率fn(A)2.事件的关系与运算定义符号表示包含关系如果事件A____,则事件B____________,这时称事件B包含事件A(或称事件A包含于事件B)______(或_______)相等关系若B⊇A且______,那么称事件A与事件B相等______发生一定发生B⊇AA⊆BA⊇BA=B定义符号表示并事件(和事件)若某事件发生________________________________,则称此事件为事件A与事件B的并事件(或和事件)______(或A+B)交事件(积事件)若某事件发生____________________________________,则称此事件为事件A与事件B的交事件(或积事件)______(或_____)当且仅当事件A发生或A∪B当且仅当事件A发生且A∩BAB事件B发生事件B发生定义符号表示互斥事件若A∩B为______事件,那么称事件A与事件B互斥A∩B=∅对立事件若A∩B为______事件,A∪B为____________,那么称事件A与事件B互为对立事件A∩B=∅且A∪B=Ω不可能不可能必然事件3.概率的几个基本性质(1)概率的取值范围:____________.(2)必然事件的概率:P(A)=___.(3)不可能事件的概率:P(A)=___.(4)概率的加法公式如果事件A与事件B互斥,则P(A∪B)=____________.(5)对立事件的概率若事件A与事件B互为对立事件,则A∪B为必然事件.P(A∪B)=___,P(A)=_________.10P(A)+P(B)11-P(B)0≤P(A)≤14.古典概型(1)基本事件的特点①任何两个基本事件是_____的;②任何事件(除不可能事件)都可以表示成____________的和.(2)特点①试验中所有可能出现的基本事件只有_______个,即_________.②每个基本事件发生的可能性______,即_____________.(3)概率公式P(A)=___________________________.互斥基本事件有限有限性相等等可能性A包含的基本事件的个数基本事件的总数5.对古典概型的理解(1)一个试验是否为古典概型,在于这个试验是否具有古典概型的两个特点——有限性和等可能性,只有同时具备这两个特点的概型才是古典概型.正确判断试验的类型是解决概率问题的关键.(2)古典概型是一种特殊的概率模型,但并不是所有的试验都是古典概型.判断正误(正确的打“√”,错误的打“×”)(1)事件发生的频率与概率是相同的.()(2)随机事件和随机试验是一回事.()(3)在大量重复试验中,概率是频率的稳定值.()(4)两个事件的和事件发生是指这两个事件至少有一个发生.()(5)若A,B为互斥事件,则P(A)+P(B)=1.()(6)在一次试验中,其基本事件的发生一定是等可能的.()答案:(1)×(2)×(3)√(4)√(5)×(6)×(2016·高考天津卷)甲、乙两人下棋,两人下成和棋的概率是12,甲获胜的概率是13,则甲不输的概率为()A.56B.25C.16D.13解析:选A.由题意得,甲不输的概率为12+13=56.(教材习题改编)若A,B为对立事件,则()A.P(A+B)≤1B.P(AB)=1C.P(AB)=0D.P(A)+P(B)≤1解析:选C.由对立事件的定义可知:P(A+B)=1,P(A)+P(B)=1,P(AB)=0.因此C选项正确.在集合x|x=nπ6,n=1,2,3,…,10中任取一个元素,则所取元素恰好满足方程cosx=12的概率是________.解析:基本事件总数为10,满足方程cosx=12的基本事件数为2,故所求概率为P=210=15.答案:15掷一个骰子的试验,事件A表示“小于5的偶数点出现”,事件B表示“小于5的点数出现”,则一次试验中,事件A+B-发生的概率为________.解析:掷一个骰子的试验有6种可能结果,依题意P(A)=26=13,P(B)=46=23,所以P(B-)=1-P(B)=1-23=13,显然A与B-互斥,从而P(A+B-)=P(A)+P(B-)=13+13=23.答案:23[典例引领](2017·高考全国卷Ⅲ)某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:℃)有关.如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间[20,25),需求量为300瓶;如果最高气温低于20,需求量为200瓶.为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表:随机事件的频率与概率最高气温[10,15)[15,20)[20,25)[25,30)[30,35)[35,40)天数216362574以最高气温位于各区间的频率估计最高气温位于该区间的概率.(1)估计六月份这种酸奶一天的需求量不超过300瓶的概率;(2)设六月份一天销售这种酸奶的利润为Y(单位:元),当六月份这种酸奶一天的进货量为450瓶时,写出Y的所有可能值,并估计Y大于零的概率.【解】(1)这种酸奶一天的需求量不超过300瓶,当且仅当最高气温低于25,由表格数据知,最高气温低于25的频率为2+16+3690=0.6,所以这种酸奶一天的需求量不超过300瓶的概率的估计值为0.6.(2)当这种酸奶一天的进货量为450瓶时,若最高气温不低于25,则Y=6×450-4×450=900;若最高气温位于区间[20,25),则Y=6×300+2(450-300)-4×450=300;若最高气温低于20,则Y=6×200+2(450-200)-4×450=-100.所以,Y的所有可能值为900,300,-100.Y大于零当且仅当最高气温不低于20,由表格数据知,最高气温不低于20的频率为36+25+7+490=0.8,因此Y大于零的概率的估计值为0.8.[通关练习]1.随着互联网的普及,网上购物已逐渐成为消费时尚,为了解消费者对网上购物的满意情况,某公司随机对4500名网上购物消费者进行了调查(每名消费者限选一种情况回答),统计结果如表:满意情况不满意比较满意满意非常满意人数200n21001000根据表中数据,估计在网上购物的消费者群体中对网上购物“比较满意”或“满意”的概率是()A.715B.25C.1115D.1315解析:选C.由题意,n=4500-200-2100-1000=1200,所以对网上购物“比较满意”或“满意”的人数为1200+2100=3300,由古典概型概率公式可得对网上购物“比较满意”或“满意”的概率为33004500=1115.2.某保险公司利用简单随机抽样方法,对投保车辆进行抽样,样本车辆中每辆车的赔付结果统计如下:赔付金额(元)01000200030004000车辆数(辆)500130100150120(1)若每辆车的投保金额均为2800元,估计赔付金额大于投保金额的概率;(2)在样本车辆中,车主是新司机的占10%,在赔付金额为4000元的样本车辆中,车主是新司机的占20%,估计在已投保车辆中,新司机获赔金额为4000元的概率.解:(1)设A表示事件“赔付金额为3000元”,B表示事件“赔付金额为4000元”,以频率估计概率得P(A)=1501000=0.15,P(B)=1201000=0.12.由于投保金额为2800元,赔付金额大于投保金额对应的情形是赔付金额为3000元和4000元,所以其概率为P(A)+P(B)=0.15+0.12=0.27.(2)设C表示事件“投保车辆中新司机获赔4000元”,由已知,样本车辆中车主为新司机的有0.1×1000=100(辆),而赔付金额为4000元的车辆中,车主为新司机的有0.2×120=24(辆),所以样本车辆中新司机车主获赔金额为4000元的频率为24100=0.24,由频率估计概率得P(C)=0.24.[典例引领]某商场有奖销售中,购满100元商品得1张奖券,多购多得,1000张奖券为一个开奖单位,设特等奖1个,一等奖10个,二等奖50个.记1张奖券中特等奖、一等奖、二等奖的事件分别为A,B,C,求:(1)1张奖券的中奖概率;(2)1张奖券不中特等奖且不中一等奖的概率.互斥事件、对立事件的概率【解】(1)设“1张奖券中奖”为事件M,则M=A∪B∪C,依题意,P(A)=11000,P(B)=101000=1100,P(C)=120,因为A,B,C两两互斥,所以P(M)=P(A∪B∪C)=P(A)+P(B)+P(C)=1+10+501000=611000,故1张奖券的中奖概率为611000.(2)设“1张奖券不中特等奖且不中一等奖”为事件N,则事件N与“1张奖券中特等奖或中一等奖”为对立事件,所以P(N)=1-P(A∪B)=1-11000+1100=9891000.故1张奖券不中特等奖且不中一等奖的概率为9891000.[提醒]间接法体现了“正难则反”的思想方法.[通关练习]1.(2018·高考全国卷Ⅲ)若某群体中的成员只用现金支付的概率为0.45,既用现金支付也用非现金支付的概率为0.15,则不用现金支付的概率为()A.0.3B.0.4C.0.6D.0.7解析:选B.设“只用现金支付”为事件A,“既用现金支付也用非现金支付”为事件B,“不用现金支付”为事件C,则P(C)=1-P(A)-P(B)=1-0.45-0.15=0.4.故选B.2.经统计,在某储蓄所一个营业窗口排队的人数相应的概率如下:排队人数012345人及5人以上概率0.10.160.30.30.10.04求:(1)至多2人排队等候的概率;(2)至少3人排队等候的概率.解:记“无人排队等候”为事件A,“1人排队等候”为事件B,“2人排队等候”为事件C,“3人排队等候”为事件D,“4人排队等候”为事件E,“5人及5人以上排队等候”为事件F,则事件A、B、C、D、E、F彼此互斥.(1)记“至多2人排队等候”为事件G,则G=A+B+C,所以P(G)=P(A+B+C)=P(A)+P(B)+P(C)=0.1+0.16+0.3=0.56.(2)法一:记“至少3人排队等候”为事件H,则H=D+E+F,所以P(H)=P(D+E+F)=P(D)+P(E)+P(F)=0.3+0.1+0.04=0.44.法二:记“至少3人排队等候”为事件H,则其对立事件为事件G,所以P(H)=1-P(G)=0.44.古典概型是高考考查的热点,考查角度较灵活,常与一些知识交汇考查,其难度较小.高考对本部分内容的考查主要有以下五个命题角度:(1)简单的古典概型的概率;(2)古典概型与平面向量的交汇;(3)古典概型与函数(方程)的交汇;(4)古典概型与解析几何的交汇;(5)古典概型与统计的交汇(下章讲解).古典概型的概率(高频考点)[典例引领]角度一简单的古典概型的概率(2018·高考全国卷Ⅱ)我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如30=7+23.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是()A.112B.114C.115D.118【解析】不超过30的素数有2,3,5,7,11,13,17,19,23,29,共10个,从中随机选取两个不同的数有C210种不同的取法,这10个数中两个不同的数的和等于30的有3对,所以所求概率P=3C210=115,故选C.【答案】C角度二古典