第4讲直线、平面平行的判定与性质第八章立体几何1.直线与平面平行的判定定理和性质定理文字语言图形语言符号语言判定定理平面外一条直线与_____________的一条直线平行,则该直线与此平面平行(简记为“线线平行⇒线面平行”)因为l∥a,a⊂α,l⊄α,所以l∥α这个平面内文字语言图形语言符号语言性质定理一条直线与一个平面平行,则过这条直线的任一平面与此平面的_____与该直线平行(简记为“线面平行⇒线线平行”)因为l∥α,l⊂β,α∩β=b,所以l∥b交线2.平面与平面平行的判定定理和性质定理文字语言图形语言符号语言判定定理一个平面内的两条_________与另一个平面平行,则这两个平面平行(简记为“线面平行⇒面面平行”)因为a∥β,b∥β,a∩b=P,a⊂α,b⊂α,所以α∥β相交直线文字语言图形语言符号语言性质定理如果两个平行平面同时和第三个平面_____,那么它们的_____平行因为α∥β,α∩γ=a,β∩γ=b,所以a∥b相交交线常用知识拓展1.垂直于同一条直线的两个平面平行,即若a⊥α,a⊥β,则α∥β.2.垂直于同一个平面的两条直线平行,即若a⊥α,b⊥α,则a∥b.3.平行于同一个平面的两个平面平行,即若α∥β,β∥γ,则α∥γ.判断正误(正确的打“√”,错误的打“×”)(1)若一条直线平行于一个平面内的一条直线,则这条直线平行于这个平面.()(2)若一条直线平行于一个平面,则这条直线平行于这个平面内的任一条直线.()(3)若直线a与平面α内无数条直线平行,则a∥α.()(4)如果一个平面内的两条直线平行于另一个平面,那么这两个平面平行.()(5)如果两个平面平行,那么分别在这两个平面内的两条直线平行或异面.()答案:(1)×(2)×(3)×(4)×(5)√(教材习题改编)如果直线a∥平面α,那么直线a与平面α内的()A.一条直线不相交B.两条直线不相交C.无数条直线不相交D.任意一条直线都不相交解析:选D.因为a∥平面α,直线a与平面α无公共点,因此a和平面α内的任意一条直线都不相交,故选D.如图,在长方体ABCDA′B′C′D′中,下列直线与平面AD′C平行的是()A.B′C′B.A′BC.A′B′D.BB′解析:选B.因为A′B∥D′C,A′B⊄平面AD′C,CD′⊂平面AD′C,所以A′B∥平面AD′C.故选B.a、b、c为三条不重合的直线,α、β、γ为三个不重合的平面,现给出四个命题:①c∥αc∥β⇒α∥β②α∥γβ∥γ⇒α∥β③c∥αa∥c⇒a∥α④a∥γα∥γ⇒a∥α其中正确的命题是________.解析:②正确.①错在α与β可能相交.③④错在a可能在α内.答案:②正方体ABCDA1B1C1D1中,平面AB1D1和平面BC1D的位置关系为____________.解析:由题意得四边形BB1D1D为矩形,故BD∥B1D1.同理AB1∥C1D.又AB1∩B1D1=B1,AB1⊂平面AB1D1,B1D1⊂平面AB1D1,则由面面平行的判定定理可知平面AB1D1和平面BC1D的位置关系为平行.答案:平行设m,n表示不同直线,α,β表示不同平面,则下列结论中正确的是()A.若m∥α,m∥n,则n∥αB.若m⊂α,n⊂β,m∥β,n∥α,则α∥βC.若α∥β,m∥α,m∥n,则n∥βD.若α∥β,m∥α,n∥m,n⊄β,则n∥β与线、面平行相关命题的判定(师生共研)【解析】A错误,n有可能在平面α内;B错误,平面α有可能与平面β相交;C错误,n也有可能在平面β内;D正确,易知m∥β或m⊂β,若m⊂β,又n∥m,n⊄β,所以n∥β,若m∥β,过m作平面γ交平面β于直线l,则m∥l,又n∥m,所以n∥l,又n⊄β,l⊂β,所以n∥β.【答案】D解决线、面平行关系应注意的问题(1)注意判定定理与性质定理中易忽视的条件,如线面平行的条件中线在面外易被忽视.(2)结合题意构造或绘制图形,结合图形作出判断.(3)会举反例或用反证法推断命题是否正确.1.下列命题中正确的是()A.若a,b是两条直线,且a∥b,那么a平行于经过b的任何平面B.若直线a和平面α满足a∥α,那么a与α内的任何直线平行C.平行于同一条直线的两个平面平行D.若直线a,b和平面α满足a∥b,a∥α,b⊄α,则b∥α解析:选D.A错误,a可能在经过b的平面内;B错误,a与α内的直线平行或异面;C错误,两个平面可能相交;D正确,由a∥α,可得a平行于经过直线a的平面与α的交线c,即a∥c,又a∥b,所以b∥c,b⊄α,c⊂α,所以b∥α.2.(2019·高考全国卷Ⅱ)设α,β为两个平面,则α∥β的充要条件是()A.α内有无数条直线与β平行B.α内有两条相交直线与β平行C.α,β平行于同一条直线D.α,β垂直于同一平面解析:选B.对于A,C,D选项,α均有可能与β相交,故排除A,C,D选项,选B.角度一线面平行的证明在正方体ABCDA1B1C1D1中,E,F,G,H分别是BC,CC1,C1D1,A1A的中点.求证:(1)BF∥HD1;(2)EG∥平面BB1D1D.线面平行的判定与性质(多维探究)【证明】(1)如图所示,取BB1的中点M,连接MH,MC1,易证四边形HMC1D1是平行四边形,所以HD1∥MC1.又因为在平面BCC1B1中,BM══∥FC1,所以四边形BMC1F为平行四边形,所以MC1∥BF,所以BF∥HD1.(2)取BD的中点O,连接EO,D1O,则OE∥DC且OE=12DC,又D1G∥DC且D1G=12DC,所以OE══∥D1G,所以四边形OEGD1是平行四边形,所以GE∥D1O.又D1O⊂平面BB1D1D,GE⊄平面BB1D1D,所以EG∥平面BB1D1D.角度二线面平行性质的应用(2019·高考全国卷Ⅰ)如图,直四棱柱ABCDA1B1C1D1的底面是菱形,AA1=4,AB=2,∠BAD=60°,E,M,N分别是BC,BB1,A1D的中点.(1)证明:MN∥平面C1DE;(2)求点C到平面C1DE的距离.【解】(1)证明:连接B1C,ME.因为M,E分别为BB1,BC的中点,所以ME∥B1C,且ME=12B1C.又因为N为A1D的中点,所以ND=12A1D.由题设知A1B1綊DC,可得B1C綊A1D,故ME綊ND,因此四边形MNDE为平行四边形,MN∥ED.又MN⊄平面C1DE,所以MN∥平面C1DE.(2)过C作C1E的垂线,垂足为H.由已知可得DE⊥BC,DE⊥C1C,所以DE⊥平面C1CE,故DE⊥CH.从而CH⊥平面C1DE,故CH的长即C到平面C1DE的距离.由已知可得CE=1,C1C=4,所以C1E=17,故CH=41717.从而点C到平面C1DE的距离为41717.证明直线与平面平行的常用方法(1)定义法:证明直线与平面没有公共点,通常要借助于反证法来证明.(2)判定定理法:在利用判定定理时,关键是找到平面内与已知直线平行的直线,可先直观判断题中是否存在这样的直线,若不存在,则需作出直线,常考虑利用三角形的中位线、平行四边形的对边平行或过已知直线作一平面,找其交线进行证明.1.如图,在四棱锥PABCD中AB∥CD,AB=2,CD=3,M为PC上一点,且PM=2MC.求证:BM∥平面PAD.证明:如图,过M作MN∥CD交PD于点N,连接AN.因为PM=2MC.所以MN=23CD.又AB=23CD,且AB∥CD,所以AB══∥MN.所以四边形ABMN为平行四边形,所以BM∥AN.又BM⊄平面PAD,AN⊂平面PAD,所以BM∥平面PAD.2.如图所示,已知四边形ABCD是正方形,四边形ACEF是矩形,AB=2,AF=1,M是线段EF的中点.(1)求证:MA∥平面BDE.(2)若平面ADM∩平面BDE=l,平面ABM∩平面BDE=m,试分析l与m的位置关系,并证明你的结论.解:(1)证明:如图,记AC与BD的交点为O,连接OE.因为O,M分别是AC,EF的中点,四边形ACEF是矩形,所以四边形AOEM是平行四边形,所以AM∥OE.又因为OE⊂平面BDE,AM⊄平面BDE,所以AM∥平面BDE.(2)l∥m,证明如下:由(1)知AM∥平面BDE,又AM⊂平面ADM,平面ADM∩平面BDE=l,所以l∥AM,同理,AM∥平面BDE,又AM⊂平面ABM,平面ABM∩平面BDE=m,所以m∥AM,所以l∥m.如图所示,在三棱柱ABCA1B1C1中,E,F,G,H分别是AB,AC,A1B1,A1C1的中点,求证:(1)B,C,H,G四点共面;(2)平面EFA1∥平面BCHG.面面平行的判定与性质(典例迁移)【证明】(1)因为G,H分别是A1B1,A1C1的中点,所以GH∥B1C1,又B1C1∥BC,所以GH∥BC,所以B,C,H,G四点共面.(2)在△ABC中,E,F分别为AB,AC的中点,所以EF∥BC,因为EF⊄平面BCHG,BC⊂平面BCHG,所以EF∥平面BCHG.又因为G,E分别为A1B1,AB的中点,所以A1G══∥EB,所以四边形A1EBG是平行四边形,所以A1E∥GB.因为A1E⊄平面BCHG,GB⊂平面BCHG,所以A1E∥平面BCHG.又因为A1E∩EF=E,所以平面EFA1∥平面BCHG.[迁移探究1](变条件)在本例条件下,若D为BC1的中点,求证:HD∥平面A1B1BA.证明:如图所示,连接HD,A1B,因为D为BC1的中点,H为A1C1的中点,所以HD∥A1B,又HD⊄平面A1B1BA,A1B⊂平面A1B1BA,所以HD∥平面A1B1BA.[迁移探究2](变条件)在本例条件下,若D1,D分别为B1C1,BC的中点,求证:平面A1BD1∥平面AC1D.证明:如图所示,连接A1C交AC1于点M,因为四边形A1ACC1是平行四边形,所以M是A1C的中点,连接MD,因为D为BC的中点,所以A1B∥DM.因为A1B⊂平面A1BD1,DM⊄平面A1BD1,所以DM∥平面A1BD1.又由三棱柱的性质知,D1C1══∥BD,所以四边形BDC1D1为平行四边形,所以DC1∥BD1.又DC1⊄平面A1BD1,BD1⊂平面A1BD1,所以DC1∥平面A1BD1,又因为DC1∩DM=D,DC1,DM⊂平面AC1D,所以平面A1BD1∥平面AC1D.1.如图,AB∥平面α∥平面β,过A,B的直线m,n分别交α,β于C,E和D,F,若AC=2,CE=3,BF=4,则BD的长为()A.65B.75C.85D.95解析:选C.由AB∥α∥β,易证ACCE=BDDF.即ACAE=BDBF,所以BD=AC·BFAE=2×45=85.2.(2019·河南八市联考)如图,在矩形ABCD中,AB=1,AD=2,PA⊥平面ABCD,E,F分别为AD,PA的中点,点Q是BC上一个动点.(1)当Q是BC的中点时,求证:平面BEF∥平面PDQ;(2)当BD⊥FQ时,求BQQC的值.解:(1)因为E,Q分别是AD,BC的中点,所以ED=BQ,ED∥BQ,所以四边形BEDQ是平行四边形,所以BE∥DQ.又BE⊄平面PDQ,DQ⊂平面PDQ,所以BE∥平面PDQ,又F是PA的中点,所以EF∥PD,因为EF⊄平面PDQ,PD⊂平面PDQ,所以EF∥平面PDQ,因为BE∩EF=E,BE,EF⊂平面BEF,所以平面BEF∥平面PDQ.(2)如图,连接AQ,因为PA⊥平面ABCD,BD⊂平面ABCD,所以PA⊥BD.因为BD⊥FQ,PA∩FQ=F,PA,FQ⊂平面PAQ,所以BD⊥平面PAQ,因为AQ⊂平面PAQ,所以AQ⊥BD,在矩形ABCD中,由AQ⊥BD得△AQB与△DBA相似,所以AB2=AD·BQ,又AB=1,AD=2,所以BQ=12,QC=32,所以BQQC=13.