第四章圆与方程章末综合提升巩固层知识整合提升层题型探究求圆的方程【例1】求圆心在圆x-322+y2=2上,且与x轴和直线x=-12都相切的圆的方程.[解]设圆心坐标为(a,b),半径为r,因为圆x-322+y2=2在直线x=-12的右侧,且所求的圆与x轴和直线x=-12都相切,所以a>-12.所以r=a+12,r=|b|.又圆心(a,b)在圆x-322+y2=2上,所以a-322+b2=2,联立r=a+12,r=|b|,a-322+b2=2.解得a=12,r=1,b=±1.所以所求圆的方程是x-122+(y-1)2=1,或x-122+(y+1)2=1.采用待定系数法求圆的方程的一般步骤(1)选择圆的方程的某一形式.(2)由题意得a,b,r(或D,E,F)的方程(组).(3)解出a,b,r(或D,E,F).(4)代入圆的方程.[跟进训练]1.已知半径为5的圆的圆心在x轴上,圆心的横坐标是整数且与直线4x+3y-29=0相切,求圆的方程.[解]设圆心为M(m,0)(m∈Z),由于圆与直线4x+3y-29=0相切,且半径为5,所以|4m-29|5=5,即|4m-29|=25,因为m为整数,故m=1,故所求圆的方程为(x-1)2+y2=25.直线与圆的位置关系【例2】已知直线l:2mx-y-8m-3=0和圆C:x2+y2-6x+12y+20=0.(1)m∈R时,证明l与C总相交;(2)m取何值时,l被C截得的弦长最短,求此弦长.[解](1)证明:直线的方程可化为y+3=2m(x-4),由点斜式可知,直线过点P(4,-3).由于42+(-3)2-6×4+12×(-3)+20=-150,所以点P在圆内,故直线l与圆C总相交.(2)如图,当圆心C(3,-6)到直线l的距离最大时,线段AB的长度最短.此时PC⊥l,所以直线l的斜率为-13,所以m=-16.在Rt△APC中,|PC|=10,|AC|=r=5,所以|AP|2=|AC|2-|PC|2=25-10=15,所以|AP|=15,所以|AB|=215,即最短弦长为215.直线与圆位置关系的判断:求出圆心到直线的距离d与r比较或由直线与圆联立方程组消去一个变量,得到一元二次方程,判断判别式△的符号d>r⇔相离⇔△<0d=r⇔相切⇔△=0d<r⇔相交⇔△>0[跟进训练]2.已知圆C关于直线x+y+2=0对称,且过点P(-2,2)和原点O.(1)求圆C的方程;(2)相互垂直的两条直线l1,l2都过点A(-1,0),若l1,l2被圆C所截得弦长相等,求此时直线l1的方程.[解](1)由题意知,直线x+y+2=0过圆C的圆心,设圆心C(a,-a-2).由题意,得(a+2)2+(-a-2-2)2=a2+(-a-2)2,解得a=-2.因为圆心C(-2,0),半径r=2,所以圆C的方程为(x+2)2+y2=4.(2)由题意知,直线l1,l2的斜率存在且不为0,设l1的斜率为k,则l2的斜率为-1k,所以l1:y=k(x+1),即kx-y+k=0,l2:y=-1k(x+1),即x+ky+1=0.由题意,得圆心C到直线l1,l2的距离相等,所以|-2k+k|k2+1=|-2+1|k2+1,解得k=±1,所以直线l1的方程为x-y+1=0或x+y+1=0.圆与圆的位置关系【例3】已知圆C1:x2+y2+4x-4y-5=0与圆C2:x2+y2-8x+4y+7=0.(1)证明圆C1与圆C2相切,并求过切点的两圆公切线的方程;(2)求过点(2,3)且与两圆相切于(1)中切点的圆的方程.[解](1)证明:把圆C1与圆C2都化为标准方程形式,得(x+2)2+(y-2)2=13,(x-4)2+(y+2)2=13.圆心与半径长分别为C1(-2,2),r1=13;C2(4,-2),r2=13.因为|C1C2|=(-2-4)2+(2+2)2=213=r1+r2,所以圆C1与圆C2相切.由x2+y2+4x-4y-5=0,x2+y2-8x+4y+7=0,得12x-8y-12=0,即3x-2y-3=0,就是过切点的两圆公切线的方程.(2)由圆系方程,可设所求圆的方程为x2+y2+4x-4y-5+λ(3x-2y-3)=0.点(2,3)在此圆上,将点坐标代入方程解得λ=43.所以所求圆的方程为x2+y2+4x-4y-5+43(3x-2y-3)=0,即x2+y2+8x-203y-9=0.判断两圆位置关系的两种比较方法:(1)几何法是利用两圆半径和或差与圆心距作比较,得到两圆位置关系,(其中R>r)d>R+r⇔外离,d=R+r⇔外切,R-r<d<R+r⇔相交,d=R-r⇔内切,0≤d<R-r⇔内含.(2)代数法是把两圆位置关系的判断完全转化为代数问题,转化为方程组解的组数问题,从而体现了几何问题与代数问题之间的相互联系,但这种方法只能判断出不相交、相交和相切三种位置关系,而不能像几何法一样,能准确判断出外离、外切、相交、内切和内含五种位置关系.x+y-3=0[AB的中垂线即为圆C1、圆C2的连心线C1C2.又C1(3,0),C2(0,3),所以C1C2所在直线的方程为x+y-3=0.][跟进训练]3.已知圆C1:x2+y2-6x-7=0与圆C2:x2+y2-6y-27=0相交于A,B两点,则线段AB的中垂线方程为________.空间中点的坐标及距离公式的应用【例4】如图,已知正方体ABCDA′B′C′D′的棱长为a,M为BD′的中点,点N在A′C′上,且|A′N|=3|NC′|,试求|MN|的长.[解]由题意应先建立坐标系,以D为原点,建立如图所示空间直角坐标系.因为正方体棱长为a,所以B(a,a,0),A′(a,0,a),C′(0,a,a),D′(0,0,a).由于M为BD′的中点,取A′C′的中点O′,所以Ma2,a2,a2,O′a2,a2,a.因为|A′N|=3|NC′|,所以N为A′C′的四等分点,从而N为O′C′的中点,故Na4,3a4,a.根据空间两点间的距离公式,可得|MN|=a2-a42+a2-3a42+a2-a2=64a.求空间中坐标及两点间距离方法及注意点:(1)求空间两点间的距离时,一般使用空间两点间的距离公式,应用公式的关键在于建立适当的坐标系,确定两点的坐标.(2)确定点的坐标的方法视具体题目而定,一般来说,要转化到平面中求解,有时也利用几何图形的特征,结合平面直角坐标系的知识确定.[跟进训练]4.如图所示,直三棱柱ABCA1B1C1中,|C1C|=|CB|=|CA|=2,AC⊥CB,D,E分别是棱AB,B1C1的中点,F是AC的中点,求DE,EF的长度.[解]以点C为坐标原点,CA、CB、CC1所在直线为x轴、y轴、z轴,建立如图所示的空间直角坐标系.∵|C1C|=|CB|=|CA|=2,∴C(0,0,0),A(2,0,0),B(0,2,0),C1(0,0,2),B1(0,2,2),由中点坐标公式可得,D(1,1,0),E(0,1,2),F(1,0,0),∴|DE|=(1-0)2+(1-1)2+(0-2)2=5,|EF|=(0-1)2+(1-0)2+(2-0)2=6.Thankyouforwatching!