第二章点、直线、平面之间的位置关系2.3直线、平面垂直的判定及其性质2.3.3直线与平面垂直的性质2.3.4平面与平面垂直的性质学习目标核心素养1.理解直线和平面垂直、平面与平面垂直的性质定理,并能用文字、符号和图形语言描述定理.(重点)2.能应用线面垂直、面面垂直的性质定理证明相关问题.(重点、难点)3.理解平行与垂直之间的相互转化.(易错点)1.通过学习直线与平面垂直的性质,提升直观想象、逻辑推理的数学核心素养.2.通过学习平面与平面垂直的性质,提升直观想象、逻辑推理、数学运算的数学核心素养.自主预习探新知1.直线与平面垂直的性质定理文字语言垂直于同一个平面的两条直线符号语言a⊥αb⊥α⇒图形语言平行a∥b作用①线面垂直⇒线线平行②作平行线思考:过一点有几条直线与已知平面垂直?[提示]有且仅有一条.假设过一点有两条直线与已知平面垂直,由直线与平面垂直的性质定理可得这两条直线平行,应无公共点,这与过同一点相矛盾,故只有一条直线.2.平面与平面垂直的性质定理文字语言两个平面垂直,则垂直于的直线与另一个平面符号语言α⊥βα∩β=l⇒a⊥β一个平面内交线垂直a⊂αa⊥l图形语言作用①面面垂直⇒垂直②作面的垂线线面思考:如果α⊥β,则α内的直线必垂直于β内的无数条直线吗?[提示]正确.若设α∩β=l,a⊂α,b⊂β,b⊥l,则a⊥b,故β内与b平行的无数条直线均垂直于α内的任意直线.D[由题意可知l⊥α,所以l⊥m.]1.直线n⊥平面α,n∥l,直线m⊂α,则l、m的位置关系是()A.相交B.异面C.平行D.垂直D[可能平行,也可能相交.如图,α与δ平行,α与γ垂直.]2.若平面α⊥平面β,平面β⊥平面γ,则()A.α∥γB.α⊥γC.α与γ相交但不垂直D.以上都有可能C[由线面垂直的性质定理可知,当b⊥α,a⊥α时,a∥b.]3.已知直线a,b,平面α,且a⊥α,下列条件中,能推出a∥b的是()A.b∥αB.b⊂αC.b⊥αD.b与α相交相交、平行或异面[根据题意,l,m可能相交、平行或异面.]4.平面α⊥平面β,直线l⊂α,直线m⊂β,则直线l,m的位置关系是________.合作探究释疑难线面垂直性质定理的应用【例1】如图所示,在正方体ABCDA1B1C1D1中,M是AB上一点,N是A1C的中点,MN⊥平面A1DC.求证:MN∥AD1.[证明]因为四边形ADD1A1为正方形,所以AD1⊥A1D.又因为CD⊥平面ADD1A1,所以CD⊥AD1.因为A1D∩CD=D,所以AD1⊥平面A1DC.又因为MN⊥平面A1DC,所以MN∥AD1.证明线线平行常用如下方法:(1)利用线线平行定义:证共面且无公共点;(2)利用三线平行公理:证两线同时平行于第三条直线;(3)利用线面平行的性质定理:把证线线平行转化为证线面平行;(4)利用线面垂直的性质定理:把证线线平行转化为证线面垂直;(5)利用面面平行的性质定理:把证线线平行转化为证面面平行.[跟进训练]1.如图,已知平面α∩平面β=l,EA⊥α,垂足为A,EB⊥β,直线a⊂β,a⊥AB.求证:a∥l.[证明]因为EA⊥α,α∩β=l,即l⊂α,所以l⊥EA.同理l⊥EB.又EA∩EB=E,所以l⊥平面EAB.因为EB⊥β,a⊂β,所以EB⊥a,又a⊥AB,EB∩AB=B,所以a⊥平面EAB.由线面垂直的性质定理,得a∥l.面面垂直性质定理的应用【例2】如图,在三棱锥PABC中,PA⊥平面ABC,平面PAB⊥平面PBC.求证:BC⊥AB.[证明]如图,在平面PAB内,作AD⊥PB于点D.∵平面PAB⊥平面PBC,且平面PAB∩平面PBC=PB,AD⊂平面PAB,∴AD⊥平面PBC.又BC⊂平面PBC,∴AD⊥BC.又∵PA⊥平面ABC,BC⊂平面ABC,∴PA⊥BC,又∵PA∩AD=A,∴BC⊥平面PAB.又AB⊂平面PAB,∴BC⊥AB.1.证明或判定线面垂直的常用方法:(1)线面垂直的判定定理;(2)面面垂直的性质定理;(3)若a∥b,a⊥α,则b⊥α(a、b为直线,α为平面);(4)若a⊥α,α∥β,则a⊥β(a为直线,α,β为平面);2.两平面垂直的性质定理告诉我们要将面面垂直转化为线面垂直,方法是在其中一个面内作(找)与交线垂直的直线.[跟进训练]2.如图,四棱锥VABCD的底面是矩形,侧面VAB⊥底面ABCD,又VB⊥平面VAD.求证:平面VBC⊥平面VAC.[证明]∵面VAB⊥面ABCD,且BC⊥AB,面VAB∩面ABCD=AB,BC⊂平面ABCD.∴BC⊥面VAB,又VA⊂平面VAB,∴BC⊥VA,又VB⊥面VAD,∴VB⊥VA,又VB∩BC=B,∴VA⊥面VBC,∵VA⊂面VAC,∴平面VBC⊥平面VAC.线线、线面、面面垂直的综合应用[探究问题]试总结线线垂直、线面垂直、面面垂直之间的转化关系.[提示]垂直问题转化关系如下所示:【例3】如图所示,△ABC为正三角形,EC⊥平面ABC,BD∥CE,且CE=CA=2BD,M是EA的中点,求证:(1)DE=DA;(2)平面BDM⊥平面ECA;(3)平面DEA⊥平面ECA.思路探究:(1)设出BD,分别求出DE、DA的长度或证明DM⊥AE,即证DM为AE的中垂线即可.(2)(3)只需证明DM⊥平面ECA即可.[证明](1)设BD=a,如图,作DF∥BC交CE于F,则CF=DB=a.因为CE⊥平面ABC,所以BC⊥CF,DF⊥EC,所以DE=EF2+DF2=5a.又因为DB⊥平面ABC,所以DA=DB2+AB2=5a,所以DE=DA.(2)取CA的中点N,连接MN,BN,则MN綊12CE綊DB.所以四边形MNBD为平行四边形,所以MD∥BN.又因为EC⊥平面ABC,所以EC⊥BN,EC⊥MD.又DE=DA,M为EA的中点,所以DM⊥AE.所以DM⊥平面AEC,所以平面BDM⊥平面ECA.(3)由(2)知DM⊥平面AEC,而DM⊂平面DEA,所以平面DEA⊥平面ECA.本例条件不变,试求平面ADE与平面ABC所成二面角的大小.[解]如图延长ED交CB延长线于点N,连接AN,设BD=a,由例题知,CE=AC=BC=AB=2a,在△CEN中,由BDCE=12知B为CN中点,∴CB=BN=2a.∴△ABN中,∠ABN=120°,∠BAN=∠BNA=30°,∴∠CAN=90°,即NA⊥CA.又EC⊥平面ABC,∴EC⊥NA,又CA∩CE=C,∴NA⊥平面ACE,∴NA⊥AE,NA⊥AC,且AN为平面ADE与平面ABC的交线.∴∠CAE为平面ADE与平面ABC所成二面角的平面角,在Rt△ACE中,AC=CE,∴∠CAE=45°.所以平面ADE与平面ABC所成二面角为45°.垂直关系的互化及解题策略:空间问题化成平面问题是解决立体几何问题的一个基本原则,解题时,要抓住几何图形自身的特点,如等腰(边)三角形的三线合一、中位线定理、菱形的对角线互相垂直等.还可以通过解三角形,产生一些题目所需要的条件,对于一些较复杂的问题,注意应用转化思想解决问题.课堂小结提素养1.线面垂直的性质定理揭示了空间中“平行”与“垂直”关系的内在联系,提供了“垂直”与“平行”关系相互转化的依据.2.面面垂直的性质定理揭示了“面面垂直、线面垂直及线线垂直”间的内在联系,体现了数学中的化归转化思想,其转化关系如下:D[a⊥b,b⊥α,则a∥α或a⊂α.选D.]1.直线a与直线b垂直,直线b⊥平面α,则直线a与平面α的位置关系是()A.a⊥αB.a∥αC.a⊂αD.a⊂α或a∥αB[∵PA=PB,AD=DB,∴PD⊥AB.又∵平面ABC⊥平面PAB,平面ABC∩平面PAB=AB,∴PD⊥平面ABC.]2.如图所示,三棱锥PABC中,平面ABC⊥平面PAB,PA=PB,AD=DB,则()A.PD⊂平面ABCB.PD⊥平面ABCC.PD与平面ABC相交但不垂直D.PD∥平面ABC4[∵PA⊥平面ABC,AB⊂平面ABC,AC⊂平面ABC,BC⊂平面ABC,∴PA⊥AB,PA⊥AC,PA⊥BC,则△PAB,△PAC为直角三角形.由BC⊥AC,且AC∩PA=A,得BC⊥平面PAC,从而BC⊥PC,因此△ABC,△PBC也是直角三角形.故直角三角形有4个.]3.如图,已知PA⊥平面ABC,BC⊥AC,则图中直角三角形的个数为________.4.如图所示,在四棱锥SABCD中,底面ABCD是矩形,侧面SDC⊥底面ABCD,求证:平面SCD⊥平面SBC.[证明]因为底面ABCD是矩形,所以BC⊥CD.又平面SDC⊥平面ABCD,平面SDC∩平面ABCD=CD,BC⊂平面ABCD,所以BC⊥平面SCD.又因为BC⊂平面SBC.所以平面SCD⊥平面SBC.Thankyouforwatching!