2.9有理数的乘法第2章有理数导入新课讲授新课当堂练习课堂小结2.有理数的乘法的运算律学习目标1.进一步熟练有理数的乘法运算;(重点)2.归纳总结多个有理数相乘的符号法则;(重点)3.能够利用有理数的运算律进行简便计算.(重点,难点)导入新课在小学里,我们都知道,数的乘法满足交换律、结合律和分配律,例如3×5=5×3(3×5)×2=3×(5×2)3×(5+2)=3×5+3×2思考:引入负数后,三种运算律是否还成立呢?回顾与思考第一组:(2)(3×4)×0.25=3×(4×0.25)=(3)2×(3+4)=2×3+2×4=(1)2×3=3×2=2×33×2(3×4)×0.253×(4×0.25)2×(3+4)2×3+2×466331414===讲授新课有理数乘法的运算律一问题下面每小组运算分别体现了什么运算律?5×(-4)=15-35=第二组:(2)[3×(-4)]×(-5)=3×[(-4)×(-5)]=(3)5×[3+(-7)]=5×3+5×(-7)=(1)5×(-6)=(-6)×5=-30-306060-20-205×(-6)(-6)×5[3×(-4)]×(-5)3×[(-4)×(-5)]5×[3+(-7)]5×3+5×(-7)===(-12)×(-5)=3×20=结论:(1)第一组式子中数的范围是________;(2)第二组式子中数的范围是________;(3)比较第一组和第二组中的算式,可以发现_________________________________.正数有理数各运算律在有理数范围内仍然适用两个数相乘,交换两个因数的位置,积相等.ab=ba三个数相乘,先把前两个数相乘,或先把后两个数相乘,积相等.(ab)c=a(bc)根据乘法交换律和结合律可以推出:三个以上有理数相乘,可以任意交换因数的位置,也可先把其中的几个数相乘.1.乘法交换律:2.乘法结合律:数的范围已扩充到有理数.总结归纳一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加.3.分配律:根据分配律可以推出:一个数同几个数的和相乘,等于把这个数分别同这几个数相乘,再把积相加.a(b+c)ab+ac=a(b+c+d)=ab+ac+ad例1计算:解:(1)(2)4.98×(-5)=(5-0.02)×(-5)=(-25)+0.1=-24.9122(1)30;235(2)4.985.122302351223030302351520127.为了简化计算,可先把算式变形,再运用分配率典例精析例2计算:3414(1)8;4315223(2)848.595341433431473(1)8=8=61=4;43154434151010223232(2)848=88459555923888=8=8=8.55999解:为了简化计算,可逆向运用分配律观察下列各式,它们的积是正的还是负的?多个不等于0的有理数相乘,积的符号和负因数的个数有什么关系?(1)(-1)×2×3×4(2)(-1)×(-2)×3×4(3)(-1)×(-2)×(-3)×4(4)(-1)×(-2)×(-3)×(-4)(5)(-1)×(-2)×(-3)×(-4)×0多个有理数的乘法二负正负正零几个不等于零的数相乘,积的正负号由负因数的个数决定.当负因数的个数为奇数时,积为负;当负因数的个数为偶数时,积为正.几个数相乘,有一个因数为零,积就为零.总结归纳例3计算:13541188232465437350.48();();()1313188=88=83=112424541541123=-3=654654237350=0.48解:();();()1.说出下列各题结果的符号:(1)(0.12)5(32)(2)1;(2)12(5)(3)(4.5)3.2.三个数的乘积为0,则()A.三个数一定都为0B.一个数为0,其他两个不为0C.至少有一个是0D.二个数为0,另一个不为0正负C当堂练习3.判断:(1)几个有理数的乘积是0,其中只有一个因数是0.()(2)几个同号有理数的乘积是正数.()(3)几个数相乘,积的符号由负因数的个数决定:当负因数的个数有奇数个时,积为负.当负因数的个数有偶数个时,积为正.()4.若a0,b0,c0,则abc0.()×√××(+-)×125.计算:解:原式==3+2-6=-1141612111121212462591(1)(3)()();65441(2)(5)6()546.计算:解:(1)原式591(3)654278(2)原式4156546课堂小结两个数相乘,交换两个因数的位置,积不变.ab=ba三个数相乘,先把前两个数相乘,或先把后两个数相乘,积不变.(ab)c=a(bc)1.乘法交换律:2.乘法结合律:一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加.3.分配律:a(b+c)ab+ac=4.几个不是零的数相乘,负因数的个数为奇数时积为负数偶数时积为正数5.几个数相乘若有因数为零则积为零.