课后课时精练A级:“四基”巩固训练一、选择题1.若sinπ6-α=13,则cos2π3+2α的值为()A.-13B.-79C.13D.79解析cos2π3+2α=-cosπ3-2α=-cos2π6-α=-1-2sin2π6-α=2sin2π6-α-1=-79.解析答案B答案2.若sinα+cosαsinα-cosα=12,则tan2α=()A.-34B.34C.-43D.43解析∵sinα+cosαsinα-cosα=12,∴2sinα+2cosα=sinα-cosα,整理得sinα=-3cosα,即sinαcosα=-3=tanα,∴tan2α=2tanα1-tan2α=34.故选B.解析答案B答案3.2sin2α1+cos2α·cos2αcos2α=()A.tan2αB.tanαC.1D.12解析原式=2sin2α2cos2α·cos2αcos2α=tan2α.解析答案A答案4.在△ABC中,若sinBsinC=cos2A2,则△ABC是()A.等边三角形B.等腰三角形C.直角三角形D.等腰直角三角形答案B答案解析由sinBsinC=cos2A2得sinBsinC=1+cosA2,∴2sinBsinC=1+cosA,∴2sinBsinC=1+cos[π-(B+C)]=1-cos(B+C),∴2sinBsinC=1-cosBcosC+sinBsinC,∴cosBcosC+sinBsinC=1,∴cos(B-C)=1,又∵-180°B-C180°,∴B-C=0°,∴B=C,∴△ABC是等腰三角形.解析5.若△ABC的内角A满足sin2A=23,则sinA+cosA的值为()A.153B.-153C.53D.-53答案A答案解析∵sin2A=2sinAcosA=23,∴A为锐角,且1+2sinAcosA=53,即sin2A+2sinAcosA+cos2A=53.∴|sinA+cosA|=153.又∵A为锐角,∴sinA+cosA=153,故选A.解析二、填空题6.已知α为第二象限的角,sinα=35,则tan2α=________.解析由sinα=35,且α为第二象限的角得cosα=-45,得tanα=-34,tan2α=-247.解析答案-247答案7.等腰三角形一个底角的余弦值为23,那么这个三角形顶角的正弦值为________.解析设A是等腰△ABC的顶角,则cosB=23,sinB=1-cos2B=1-232=53.所以sinA=sin(180°-2B)=sin2B=2sinBcosB=2×53×23=459.解析答案459答案8.已知角α,β为锐角,且1-cos2α=sinαcosα,tan(β-α)=13,则β=________.解析由1-cos2α=sinαcosα,得1-(1-2sin2α)=sinαcosα,即2sin2α=sinαcosα.∵α为锐角,∴sinα≠0,∴2sinα=cosα,即tanα=12.解析答案π4答案解法一:由tan(β-α)=tanβ-tanα1+tanβtanα=tanβ-121+12tanβ=13,得tanβ=1.∵β为锐角,∴β=π4.解析解法二:tanβ=tan(β-α+α)=tanβ-α+tanα1-tanβ-αtanα=13+121-13×12=1.∵β为锐角,∴β=π4.解析三、解答题9.已知角α在第一象限且cosα=35,求1+2cos2α-π4sinα+π2的值.解∵cosα=35且α在第一象限,∴sinα=45.∴cos2α=cos2α-sin2α=-725,sin2α=2sinαcosα=2425,原式=1+2cos2αcosπ4+sin2αsinπ4cosα=1+cos2α+sin2αcosα=145.答案10.已知sinx2-2cosx2=0.(1)求tanx的值;(2)求cos2xcos5π4+xsinπ+x的值.解(1)由sinx2-2cosx2=0,知cosx2≠0,∴tanx2=2,∴tanx=2tanx21-tan2x2=2×21-22=-43.答案(2)由(1),知tanx=-43,∴cos2xcos5π4+xsinπ+x=cos2x-cosπ4+x-sinx=cos2x-sin2x22cosx-22sinxsinx答案=cosx-sinxcosx+sinx22cosx-sinxsinx=2×cosx+sinxsinx=2×1+tanxtanx=24.答案B级:“四能”提升训练1.求函数f(x)=53cos2x+3sin2x-4sinxcosx,x∈π4,7π24的最小值,并求其单调递减区间.解f(x)=53·1+cos2x2+3·1-cos2x2-2sin2x=33+23cos2x-2sin2x=33+432cos2x-12sin2x=33+4sinπ3cos2x-cosπ3sin2x答案=33+4sinπ3-2x=33-4sin2x-π3.因为π4≤x≤7π24,所以π6≤2x-π3≤π4.所以sin2x-π3∈12,22.所以当2x-π3=π4,即x=7π24时,答案f(x)取得最小值33-22.因为y=sin2x-π3在π4,7π24上单调递增,所以f(x)在π4,7π24上单调递减.答案2.已知函数f(x)=cos2x+π3+sin2x-cos2x+23sinxcosx.(1)化简f(x);(2)若f(α)=17,2α是第一象限角,求sin2α.解(1)f(x)=12cos2x-32sin2x-cos2x+3sin2x=32sin2x-12cos2x=sin2x-π6.答案(2)f(α)=sin2α-π6=17,2α是第一象限角,即2kπ<2α<π2+2kπ(k∈Z),∴2kπ-π6<2α-π6<π3+2kπ,k∈Z,∴cos2α-π6=437,答案∴sin2α=sin2α-π6+π6=sin2α-π6cosπ6+cos2α-π6sinπ6=17×32+437×12=5314.答案本课结束