正弦定理、余弦定理的应用预习课本P18~21,思考并完成以下问题(1)方向角和方位角各是什么样的角?(2)怎样测量物体的高度?(3)怎样测量物体所在的角度?[新知初探]实际测量中的有关名称、术语名称定义图示基线在测量中,根据测量需要适当确定的线段叫做基线仰角在同一铅垂平面内,视线在水平线方时与水平线的夹角俯角在同一铅垂平面内,视线在水平线下方时与水平线的夹角上名称定义图示方向角从指定方向线到的水平角(指定方向线是指正北或正南或正东或正西,方向角小于90°)方位角从正北的方向线按时针到目标方向线所转过的水平角目标方向线顺[小试身手]1.判断下列命题是否正确.(正确的打“√”,错误的打“×”)(1)已知三角形的三个角,能够求其三条边()(2)两个不可到达的点之间的距离无法求得()(3)方位角和方向角是一样的()×××解析:(1)错误,要解三角形,至少知道这个三角形的一条边长.(2)错误,两个不可到达的点之间的距离我们可以借助第三个点和第四个点量出角度、距离求得.(3)错误.方位角是指从正北方向顺时针转到目标方向线的水平角,而方向角是以观测者的位置为中心,将正北或正南方向作起始方向旋转到目标的方向线所成的角(一般指锐角).2.若P在Q的北偏东44°50′方向上,则Q在P的()A.东偏北45°10′方向上B.东偏北45°50′方向上C.南偏西44°50′方向上D.西偏南45°50′方向上解析:如图所示.答案:C3.从A处望B处的仰角为α,从B处望A处的俯角为β,则α,β的关系为()A.α>βB.α=βC.α+β=90°D.α+β=180°解析:根据题意和仰角、俯角的概念画出草图,如图.知α=β,故应选B.答案:B4.如图,已知A,B,C三地,其中A,C两地被一个湖隔开,测得AB=3km,B=45°,C=30°,则A,C两地的距离为________km.解析:根据题意,由正弦定理可得ABsinC=ACsinB,代入数值得3sin30°=ACsin45°,解得AC=32.答案:32测量高度[典例]济南泉城广场上的泉标是隶书“泉”字,其造型流畅别致,成了济南的标志和象征.李明同学想测量泉标的高度,于是他在广场的A点测得泉标顶端的仰角为60°,他又沿着泉标底部方向前进15.2m,到达B点,测得泉标顶部仰角为80°.你能帮李明同学求出泉标的高度吗?(精确到1m)[解]如图所示,点C,D分别为泉标的底部和顶端.依题意,∠BAD=60°,∠CBD=80°,AB=15.2m,则∠ABD=100°,故∠ADB=180°-(60°+100°)=20°.在△ABD中,根据正弦定理,BDsin60°=ABsin∠ADB.∴BD=AB·sin60°sin20°=15.2·sin60°sin20°≈38.5(m).在Rt△BCD中,CD=BDsin80°=38.5·sin80°≈38(m),即泉城广场上泉标的高约为38m.(1)在测量高度时,要理解仰角、俯角的概念,仰角和俯角都是在同一铅垂面内,视线与水平线的夹角;(2)准确理解题意,分清已知条件与所求,画出示意图;(3)运用正、余弦定理,有序地解相关的三角形,逐步求解问题的答案,注意方程思想的运用.[活学活用]甲、乙两楼相距200m,从乙楼底望甲楼顶的仰角为60°,从甲楼顶望乙楼顶的俯角为30°,则甲、乙两楼的高分别是多少?解:如图所示,AD为乙楼高,BC为甲楼高.在△ABC中,BC=200×tan60°=2003,AC=200÷sin30°=400,由题意可知∠ACD=∠DAC=30°,∴△ACD为等腰三角形.由余弦定理得AC2=AD2+CD2-2AD·CD·cos120°,4002=AD2+AD2-2AD2×-12=3AD2,AD2=40023,AD=40033.故甲楼高为2003m,乙楼高为40033m.测量角度问题[典例]如图所示,A,B是海面上位于东西方向相距5(3+3)nmile的两个观测点.现位于A点北偏东45°方向、B点北偏西60°方向的D点有一艘轮船发出求救信号,位于B点南偏西60°且与B点相距203nmile的C点的救援船立即前往营救,其航行速度为30nmile/h,则该救援船到达D点需要多长时间?[解]由题意,知AB=5(3+3)nmile,∠DBA=90°-60°=30°,∠DAB=90°-45°=45°,∴∠ADB=180°-(45°+30°)=105°.在△DAB中,由正弦定理得BDsin∠DAB=ABsin∠ADB,即BD=ABsin∠DABsin∠ADB=53+3sin45°sin105°=53+3sin45°sin45°cos60°+cos45°sin60°=103nmile.又∠DBC=∠DBA+∠ABC=60°,BC=203nmile,∴在△DBC中,由余弦定理,得CD=BD2+BC2-2BD·BCcos∠DBC=300+1200-2×103×203×12=30nmile,则救援船到达D点需要的时间为3030=1h.测量角度问题的关键是根据题意和图形及有关概念,确定所求的角在哪个三角形中,该三角形中已知哪些量,需要求哪些量.通常是根据题意,从实际问题中抽象出一个或几个三角形,然后通过解这些三角形,得到所求的量,从而得到实际问题的解.[活学活用]在海岸A处,发现北偏东45°方向,距离A处(3-1)nmile的B处有一艘走私船,在A处北偏西75°的方向,距离A2nmile的C处的缉私船奉命以103nmile的速度追截走私船.此时,走私船正以10nmile/h的速度从B处向北偏东30°方向逃窜,问缉私船沿什么方向能最快追上走私船?解:设缉私船用th在D处追上走私船,画出示意图,则有CD=103t,BD=10t,在△ABC中,∵AB=3-1,AC=2,∠BAC=120°,∴由余弦定理,得BC2=AB2+AC2-2AB·AC·cos∠BAC=(3-1)2+22-2·(3-1)·2·cos120°=6,∴BC=6,且sin∠ABC=ACBC·sin∠BAC=26·32=22,∴∠ABC=45°,∴BC与正北方向成90°角.∴∠CBD=90°+30°=120°,在△BCD中,由正弦定理,得sin∠BCD=BD·sin∠CBDCD=10tsin120°103t=12,∴∠BCD=30°.即缉私船沿北偏东60°方向能最快追上走私船.测量距离问题题点一:两点不相通的距离1.如图所示,要测量一水塘两侧A,B两点间的距离,其方法先选定适当的位置C,用经纬仪测出角α,再分别测出AC,BC的长b,a,则可求出A,B两点间的距离.若测得CA=400m,CB=600m,∠ACB=60°,试计算AB的长.解:在△ABC中,由余弦定理得AB2=AC2+BC2-2AC·BCcos∠ACB,∴AB2=4002+6002-2×400×600cos60°=280000.∴AB=2007(m).即A,B两点间的距离为2007m.题点二:两点间可视但有一点不可到达2.如图所示,A,B两点在一条河的两岸,测量者在A的同侧,且B点不可到达,要测出A,B的距离,其方法在A所在的岸边选定一点C,可以测出A,C的距离m,再借助仪器,测出∠ACB=α,∠CAB=β,在△ABC中,运用正弦定理就可以求出AB.若测出AC=60m,∠BAC=75°,∠BCA=45°,则A,B两点间的距离为________m.解析:∠ABC=180°-75°-45°=60°,所以由正弦定理得,ABsinC=ACsinB,∴AB=AC·sinCsinB=60×sin45°sin60°=206(m).即A,B两点间的距离为206m.答案:206题点三:两点都不可到达3.如图,A,B两点在河的同侧,且A,B两点均不可到达,测出A,B的距离,测量者可以在河岸边选定两点C,D,测得CD=a,同时在C,D两点分别测得∠BCA=α,∠ACD=β,∠CDB=γ,∠BDA=δ.在△ADC和△BDC中,由正弦定理分别计算出AC和BC,再在△ABC中,应用余弦定理计算出AB.若测得CD=32km,∠ADB=∠CDB=30°,∠ACD=60°,∠ACB=45°,求A,B两点间的距离.解:∵∠ADC=∠ADB+∠CDB=60°,∠ACD=60°,∴∠DAC=60°,∴AC=DC=32.在△BCD中,∠DBC=45°,由正弦定理,得BC=DCsin∠DBC·sin∠BDC=32sin45°·sin30°=64.在△ABC中,由余弦定理,得AB2=AC2+BC2-2AC·BCcos45°=34+38-2×32×64×22=38.∴AB=64(km).∴A,B两点间的距离为64km.当A,B两点之间的距离不能直接测量时,求AB的距离分为以下三类:(1)两点间不可通又不可视(如图①):可取某点C,使得A,B与C之间的距离可直接测量,测出AC=b,BC=a以及∠ACB=γ,利用余弦定理得:AB=a2+b2-2abcosγ.(2)两点间可视但不可到达(如图②):可选取与B同侧的点C,测出BC=a以及∠ABC和∠ACB,先使用内角和定理求出∠BAC,再利用正弦定理求出AB.(3)两点都不可到达(如图③):在河边测量对岸两个建筑物之间的距离,可先在一侧选取两点C,D,测出CD=m,∠ACB,∠BCD,∠ADC,∠ADB,再在△BCD中求出BC,在△ADC中求出AC,最后在△ABC中,由余弦定理求出AB.