2019-2020学年高中数学 第一章 计数原理 1.2 排列与组合 第2课时 排列的应用(习题课)

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

第2课时排列的应用(习题课)探究点一数字排列问题[典例精析]用0,1,2,3,4,5这六个数字可以组成多少个符合下列条件的无重复数字的数?(1)六位数且是奇数;(2)个位上的数字不是5的六位数;(3)不大于4310的四位数且是偶数.[解](1)法一:从特殊位置入手(直接法):第一步,排个位,从1,3,5三个数字中选1个,有A13种排法;第二步,排十万位,有A14种排法;第三步,排其他位,有A44种排法.故可以组成无重复数字的六位数且是奇数的共有A13A14A44=288个数.法二:从特殊元素入手(直接法):0不在两端有A14种排法;从1,3,5中任选一个排在个位上,有A13种排法;其他数字全排列有A44种排法.故可以组成无重复数字的六位数且是奇数的共有A14A13A44=288个数.法三:①从整体上排除:6个数字的全排列数为A66,0,2,4在个位上的排列数为3A55,而1,3,5在个位上,0在十万位上的排列数为3A44,故符合题意的六位奇数共有A66-3A55-3A44=288个数.②从局部上排除:1在个位上的排列有A55个,其中0在十万位上的排列有A44个,故1在个位上的六位奇数有(A55-A44)个,同理,3,5在个位上的六位奇数也各有(A55-A44)个,因此符合题意的六位奇数共有3(A55-A44)=288个数.(2)法一:(排除法)6个数字的全排列有A66个,0在十万位上的排列有A55个,5在个位上的排列有A55个,0在十万位上且5在个位上的排列有A44个,故符合题意的六位数共有A66-2A55+A44=504个数.法二:(直接法)个位上不排5,有A15种排法.但十万位上数字的排法因个位上排0与不排0而有所不同,因此,需分两类:第一类,当个位上排0时,有A55种排法;第二类,当个位上不排0时,有A14·A14·A44种排法.故符合题意的六位数共有A55+A14·A14·A44=504个.(3)法一:(直接法)①当千位上排1,3时,有A12·A13·A24种排法.②当千位上排2时,有A12·A24种排法.③当千位上排4时,形如40□□,42□□的各有A13种排法,形如41□□的有A13·A12种排法,形如43□□的只有4310和4302这2个数.故共有A12·A13·A24+A12·A24+2A13+A12·A13+2=110个符合条件的四位偶数.法二:(排除法)四位偶数中:①0在个位的有A35个.②0在十位和百位的有A12·A12·A24个.③不含0的有A12·A34个.故四位偶数有A35+A12·A12·A24+A12·A34=156个.其中形如5□□□的有A13·A24个,形如45□□的有A12·A13个,形如435□的有A12个,形如432□的有1个,形如431□而大于4310的只有4312这1个数,故大于4310的四位偶数共有A13·A24+A12·A13+A12+1+1=46个数,因此符合题意的四位偶数共有156-46=110个数.[类题通法](1)数字的排列是一类典型的排列问题,往往涉及排列特殊数,如奇数,被5整除的数等.需要注意以下几个问题:①首位数字不为0;②若所选数字中含有0,则可先排0,即“元素分析法”;③若排列的是特殊数字,如偶数,则先排个位数字,即“位置分析法”;④此类问题往往需要分类,可依据特殊元素,特殊位置分类.(2)对于有限制条件的排列问题,先考虑安排特殊元素(或位置),再安排一般的元素(或位置),即先特殊后一般,此方法为直接分步法;也可以按特殊元素当选情况(或特殊位置元素的情况)分类,再安排一般的元素(或位置),即先分类后分步,此方法为直接分类法;还可以先不考虑特殊元素(或位置),而求出所有元素的全排列数,再从中减去不满足特殊元素(或位置)要求的排列数.即先全体后排除,此方法为间接法(排除法).[针对训练]1.用0,1,2,…,9十个数字可组成多少个满足以下条件的且没有重复数字的数:(1)五位奇数;(2)大于30000的五位偶数.解:(1)要得到五位奇数,末位应从1,3,5,7,9五个数字中取,有5种取法,取定末位数字后,首位就有除这个数字和0之外的8种不同取法.首末两位取定后,十个数字还有八个数字可供中间的十位、百位与千位三个数位选取,共有A38种不同的排列方法.因此由分步乘法计数原理得共有5×8×A38=13440个没有重复数字的五位奇数.(2)要得偶数,末位应从0,2,4,6,8中选取,而要得比30000大的五位偶数,可分两类:①末位数字从0,2中选取,则首位可取3,4,5,6,7,8,9中任一个,共7种选取方法,其余三个数位就有除首尾两个数位上的数字之外的八个数字可以选取,共A38种取法.所以共有2×7×A38种不同情况.②末位数字从4,6,8中选取,则首位应从3,4,5,6,7,8,9中除去末位数字的六个数字中选取,其余三个数位仍有A38种取法,所以共有3×6×A38种不同的情况.由分类加法计数原理,比30000大的无重复数字的五位偶数共有2×7×A38+3×6×A38=10752(个).探究点二排队问题[典例精析]2.3名男生,4名女生,按照不同的要求排队拍照,求不同的排队方案的方法种数.(1)全体站成一排,其中甲只能在中间或两端;(2)全体站成一排,其中甲、乙必须在两端;(3)全体站成一排,其中甲不在最左端,乙不在最右端;(4)全体站成一排,男、女生各站在一起;(5)全体站成一排,男生必须站在一起;(6)全体站成一排,男生不能站在一起;(7)全体站成一排,男、女生各不相邻;(8)全体站成一排,甲、乙中间必须有2人;(9)排成前后两排,前排3人,后排4人;[解](1)(特殊元素优先法)先考虑甲的位置,有A13种方法,再考虑其余6人的位置,有A66种方法.故有A13·A66=2160种方法.(2)(特殊元素优先法)先安排甲、乙的位置,有A22种方法,再安排其余5人的位置,有A55种方法.故有A22·A55=240种方法.(3)法一:(特殊元素优先法)按甲是否在最右端分两类:第一类,甲在最右端,有A66种方法;第二类,甲不在最右端,甲有A15个位置可选,乙也有A15个位置可选,其余5人有A55种排法,即A15·A15·A55种方法.故有A66+A15·A15·A55=3720种方法.法二:(间接法)无限制条件的排列方法共有A77种,而甲在最左端,乙在最右端的排法分别有A66种,甲在最左端且乙在最右端的排法有A55种.故有A77-2A66+A55=3720种方法.法三:(特殊元素优先法)按最左端先安排分步.对于最左端、除甲外有A16种排法,余下六个位置全排列有A66种排法,其中甲不在最左端,乙在最右端的排法有A15·A55种.故有A16·A66-A15·A55=3720种方法.(4)(相邻问题捆绑法)男生必须站在一起,即把3名男生进行全排列,有A33种排法,女生必须站在一起,即把4名女生进行全排列,有A44种排法,全体男生、女生各看成一个元素全排列有A22种排法,由分步乘法计数原理知共有A33·A44·A22=288种排法.(5)(捆绑法)把所有男生看成一个元素,与4名女生组成5个元素全排列,故有A33·A55=720种不同的排法.(6)(不相邻问题插空法)先排女生有A44种排法,把3名男生安排在4名女生隔成的五个空中,有A35种排法,故有A44·A35=1440种不同的排法.(7)对比(6),让女生插空,有A33·A44=144种不同的排法.(8)(捆绑法)除甲、乙外,从其余的5人中任取2人,并站在甲、乙之间,与甲、乙组成一个整体,再与余下的3个人进行全排列,故有A25·A22·A44=960种不同的排法.(9)直接分步完成,共有A37·A44=5040种不同的排法.[类题通法]排队问题的解答策略(1)“排队”问题与“排数”问题有些类似,主要是从特殊位置或特殊元素两个方面考虑,当正面考虑情况复杂时,可考虑用间接法;(2)直接法解题一般采用元素分析法和位置分析法,要注意分类时不重不漏,分步要连续、独立;间接法要注意不符合条件的情形,做到不重不漏;(3)某些元素要求必须相邻时,可以先将这些元素看成一个整体,与其他元素排列后,再考虑相邻元素的内部排列,这种方法称为“捆绑法”,即“相邻元素捆绑法”;(4)某些元素要求不相邻时,可以先安排其他元素,再将这些不相邻元素插入空档,这种方法称为“插空法”,即“不相邻元素插空法”.[针对训练]2.(1)7名同学站成一排,其中甲站在中间的位置,共有多少种不同的排法?(2)7名同学站成一排,甲、乙只能站在两端的排法共有多少种?(3)7名同学站成一排,甲、乙不能站在排头和排尾的排法共有多少种?解:(1)第一步,安排除了甲之外没有特殊要求的6名同学,其为全排列,其排法数为A66=720;第二步,安排甲,甲只能在已经排好的6名同学的正中间,其排法只有1种.根据分步乘法计数原理知,共有720×1=720种不同的排法.(2)第一步,先排甲、乙,这2名同学只能排在两端,其排法有A22种;第二步,将余下的5名同学进行全排列,有A55种排法.根据分步乘法计数原理知,共有A22·A55=240种排法.(3)法一(直接法):第一步,从除去甲、乙外的其余5名同学中选2名同学站在排头和排尾,有A25种排法;第二步,余下的5名同学进行全排列,有A55种排法.所以一共有A25·A55=2400种排法.法二(间接法):若甲站在排头或排尾,有2A66种方法,若乙站在排头或排尾,有2A66种排法,若甲站在排头且乙站在排尾,有A55种排法,若甲站在排尾且乙站在排头,有A55种排法,所以甲、乙不能站在排头和排尾的排法共有A77-2A66-2A66+A55+A55=2400(种).法三(直接法):第一步,对除去甲、乙以外的5名同学进行全排列,有A55种排法;第二步,把甲安排到已排好的5人队伍中,但不能安排到排头和排尾,有A14种排法;第三步,把乙安排到已排好的6人队伍中,但不能安排到排头和排尾,有A15种排法.根据分步乘法计数原理,总的排法有A55·A14·A15=2400(种).探究点三排列中的定序问题[典例精析]五个人排成一排,求满足下列条件的不同排列各有多少种.(1)A,B,C三人左中右顺序不变(不一定相邻);(2)A在B的左边且C在D的右边(可以不相邻).[解](1)首先五个人站成一排,共有A55种排法,其中A,B,C三人的全排列有A33种排法,而A,B,C从左到右的顺序只是其中一种,所以满足条件的排法共A55A33=20(种).(2)同(1),不过此题中A和B,C和D被指定了顺序,则满足条件的排法共A55A22·A22=30(种).[类题通法]在有些排列问题中,某些元素的前后顺序是确定的(不一定相邻).解决这类问题的基本方法有两个:(1)整体法,即若有m+n个元素排成一列,其中m个元素之间的先后顺序确定不变,将这m+n个元素排成一列,有Am+nm+n种不同的排法;然后任取一个排列,固定其他n个元素的位置不动,把这m个元素交换顺序,有Amm种排法,其中只有一个排列是我们需要的,因此共有Am+nm+nAmm种满足条件的不同排法;(2)插空法,即m个元素之间的先后顺序确定不变,因此先排这m个元素,只有一种排法,然后把剩下的n个元素分类或分步插入由以上m个元素形成的空中.[针对训练]3.7人排成一列,甲必须在乙的后面(可以不相邻),有________种不同的排法;解析:7人排队,2人顺序固定,∴共有A77A22=50402=2520种不同的排法.答案:25204.用1,2,3,4,5,6,7组成没有重复数字的七位数,若1,3,5,7的顺序一定,则有________个七位数符合条件.解析:若1,3,5,7的顺序不定,有A44=24种排法,故1,3,5,7的顺序一定的排法数只占总排法数的124,故有124A77=210个七位数符合条件.答案:2101.本节课的重点是排列中的数字问题、排队问题以及定序问题,其中数字问题是本节课的难点.2.本节课要重点掌握的规律方法:(1)数

1 / 34
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功