2019-2020学年高中数学 第四章 圆与方程 4.1.1 圆的标准方程课件 新人教A版必修2

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

知识导图学法指导1.理解圆的定义,体会推导圆的标准方程的过程.2.利用待定系数法、几何性质法求圆的标准方程.3.结合圆的标准方程,体会判断点与圆的位置关系的两种方法.高考导航圆的标准方程的求解、圆心坐标及半径长的确定、点与圆的位置关系问题是常考题型,有时也会考查与圆有关的最值问题和对称问题,多以选择题或填空题的形式出现,分值5分.知识点一圆的标准方程1.圆的定义平面内到定点的距离等于定长的点的轨迹是圆.定点→圆的____;定长→圆的____.圆心半径2.圆的标准方程1.由圆的标准方程可直接得到圆的圆心和半径;反过来,已知圆的圆心和半径即可直接写出圆的标准方程.这一点体现了圆的标准方程的直观性.2.由圆的标准方程来看,要确定圆的标准方程需要三个独立的条件:圆心的横坐标、纵坐标以及圆的半径.若某点正好是圆的圆心,则该点是圆上的点吗?知识点二点与圆的位置关系设点P到圆心的距离为d,圆的半径为r,则点与圆的位置关系对应如下:位置关系点在圆外点在圆上点在圆内d与r的大小关系drd=rdr[小试身手]1.判断下列命题是否正确.(正确的打“√”,错误的打“×”)(1)方程(x-a)2+(y-b)2=m2一定表示圆.()(2)若圆的标准方程为(x+m)2+(y+n)2=a2(a≠0),此圆的半径一定是a.()××2.若某圆的标准方程为(x-1)2+(y+5)2=3,则此圆的圆心和半径长分别为()A.(-1,5),3B.(1,-5),3C.(-1,5),3D.(1,-5),3解析:由圆的标准方程可知,圆心为(1,-5),半径长为3.答案:B3.已知圆(x-1)2+(y+2)2=5,则原点与圆的位置关系是()A.原点在圆内B.原点在圆上C.原点在圆外D.以上都不对解析:∵(0-1)2+(0+2)2=5,∴(0,0)点在圆上.答案:B4.到原点的距离等于3的点的坐标所满足的方程是________________.解析:设点的坐标为(x,y),根据到原点的距离等于3以及两点间的距离公式,得x-02+y-02=3,两边平方,得x2+y2=3,是半径为3的圆.答案:x2+y2=3类型一求圆的标准方程例1(1)圆心是(4,-1),且过点(5,2)的圆的标准方程为________________;(2)圆心在直线x-2y-3=0上,且过点A(2,-3),B(-2,-5)的圆的标准方程为________________.【解析】(1)方法一(几何性质法)由题意知圆的半径长为5-42+2+12=10,又圆心是(4,-1),故所求圆的标准方程为(x-4)2+(y+1)2=10.方法二(待定系数法)设圆的标准方程为(x-4)2+(y+1)2=r2,把点(5,2)代入可得r2=10,故所求圆的标准方程为(x-4)2+(y+1)2=10.(2)方法一(几何性质法)设点C为圆心,∵点C在直线x-2y-3=0上,∴可设点C的坐标为(2a+3,a).∵该圆经过A,B两点,∴|CA|=|CB|,∴2a+3-22+a+32=2a+3+22+a+52,解得a=-2,∴圆心为C(-1,-2),半径长r=10.故所求圆的标准方程为(x+1)2+(y+2)2=10.方法二(待定系数法)设所求圆的标准方程为(x-a)2+(y-b)2=r2,由题设条件知2-a2+-3-b2=r2,-2-a2+-5-b2=r2,a-2b-3=0,解得a=-1,b=-2,r2=10.故所求圆的标准方程为(x+1)2+(y+2)2=10.方法三(几何性质法)线段AB的中点的坐标为(0,-4),直线AB的斜率kAB=-3--52--2=12,∴弦AB的垂直平分线的斜率为k=-2,∴弦AB的垂直平分线的方程为y+4=-2x,即2x+y+4=0.又圆心是直线2x+y+4=0与直线x-2y-3=0的交点,由2x+y+4=0,x-2y-3=0,得x=-1,y=-2,∴圆心坐标为(-1,-2),∴圆的半径长r=-1-22+-2+32=10,故所求圆的标准方程为(x+1)2+(y+2)2=10.答案:(1)(x-4)2+(y+1)2=10(2)(x+1)2+(y+2)2=10求圆的标准方程可以利用条件求出圆心坐标和半径,也可以用待定系数法得圆的标准方程,求出a、b、r.方法归纳求圆的标准方程的主要方法(1)几何法:利用圆的几何性质,直接求出圆心和半径,代入圆的标准方程.(2)待定系数法:由三个独立条件得到三个方程,解方程组以得到圆的标准方程中的三个参数,其步骤为设方程、列式、求解.跟踪训练1过点A(1,-1),B(-1,1)且圆心在直线x+y-2=0上的圆的方程是()A.(x-3)2+(y+1)2=4B.(x+3)2+(y-1)2=4C.(x-1)2+(y-1)2=4D.(x+1)2+(y+1)2=4解析:有三种方法.方法一设所求圆的标准方程为(x-a)2+(y-b)2=r2,由已知条件知1-a2+-1-b2=r2,-1-a2+1-b2=r2,a+b-2=0,解此方程组,得a=1,b=1,r2=4.故所求圆的标准方程为(x-1)2+(y-1)2=4.方法二设点C为圆心,∵点C在直线x+y-2=0上,∴可设点C的坐标为(a,2-a).又∵该圆经过A,B两点,∴|CA|=|CB|.∴a-12+2-a+12=a+12+2-a-12,解得a=1.∴圆心坐标为C(1,1),半径长r=|CA|=2.故所求圆的标准方程为(x-1)2+(y-1)2=4.方法三由已知可得线段AB的中点坐标为(0,0),kAB=1--1-1-1=-1,所以弦AB的垂直平分线的斜率为k=1,所以AB的垂直平分线的方程为y-0=1·(x-0),即y=x.则圆心是直线y=x与x+y-2=0的交点,由y=x,x+y-2=0,得x=1,y=1,即圆心为(1,1),圆的半径为1-12+[1--1]2=2,故所求圆的标准方程为(x-1)2+(y-1)2=4.答案:C用待定系数法求解,先设出圆的标准方程,代入三点的坐标得到关于a,b,r的方程组,解方程组即可;或用几何性质法求解,依据三角形两边的垂直平分线的交点为其外接圆的圆心即可求得圆的标准方程.类型二判断点与圆的位置关系例2已知两点P1(3,8)和P2(5,4),求以线段P1P2为直径的圆的标准方程,并判断点M(5,3),N(3,4),P(3,5)是在圆上、在圆内、还是在圆外?【解析】设圆心为C(a,b),半径长为r,则由C为线段P1P2的中点得a=3+52=4,b=8+42=6,即圆心为C(4,6),由两点间的距离公式得r=|CP1|=4-32+6-82=5,故所求圆的标准方程为(x-4)2+(y-6)2=5.方法一分别计算点M,N,P到圆心C的距离:|CM|=4-52+6-32=105,|CN|=4-32+6-42=5,|CP|=4-32+6-52=25,所以点M在圆外,点N在圆上,点P在圆内.方法二由于(5-4)2+(3-6)2=105,故点M在圆外;由于(3-4)2+(4-6)2=5,故点N在圆上;由于(3-4)2+(5-6)2=25,故点P在圆内.直径两端点坐标→圆心坐标和半径长可得→圆的标准方程→将各点坐标代入方程判断方法归纳判断点与圆位置关系的两种方法(1)几何法:主要利用点到圆心的距离与半径比较大小.(2)代数法:主要是把点的坐标代入圆的标准方程来判断.点P(x0,y0)在圆C上⇔(x0-a)2+(y0-b)2=r2;点P(x0,y0)在圆C内⇔(x0-a)2+(y0-b)2r2;点P(x0,y0)在圆C外⇔(x0-a)2+(y0-b)2r2.跟踪训练2若点(3,a)在圆x2+y2=16的内部,则a的取值范围是()A.[0,7)B.(-∞,7)C.{7}D.(7,+∞)解析:由已知得a≥0,且(3-0)2+(a-0)216,所以0≤a7,故选A.答案:A从几何意义上考虑,圆内部的点到圆心的距离小于半径,反过来,到圆心距离小于半径的点在圆内.

1 / 29
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功