2019-2020学年高中数学 第3章 概率 3-1-1 随机事件的概率课件 新人教A版必修3

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

概率第三章3.1随机事件的概率3.1.1随机事件的概率课前自主预习1.了解随机事件、必然事件、不可能事件、确定事件等基本概念.2.了解随机事件概率的定义和随机事件的发生存在着规律性.3.理解频率与概率的区别与联系.1.事件1确定事件不可能事件:在条件S下,一定不会发生的事件,叫做相对于条件S的不可能事件必然事件:在条件S下,一定会发生的事件,叫做相对于条件S的必然事件2随机事件:在条件S下可能发生也可能不发生的事件,叫做相对于条件S的随机事件2.频数与频率在相同的条件S下重复n次试验,观察某一事件A是否出现,称n次试验中事件A出现的________为事件A出现的频数,称事件A出现的比例fn(A)=nAn为事件A出现的频率.3.概率(1)含义:概率是度量随机事件发生的_____________的量.(2)与频率联系:对于给定的随机事件A,由于事件A发生的___________随着试验次数的增加稳定于___________,因此可以用频率fn(A)来估计__________.次数nA可能性大小频率fn(A)概率P(A)概率P(A)判断正误.(正确的打“√”,错误的打“×”)(1)随机事件A的概率是频率的稳定值,频率是概率的近似值.()(2)任意事件A发生的概率P(A)总满足0P(A)1.()(3)若事件A的概率趋近于0,即P(A)→0,则事件A是不可能事件.()[提示](1)√(2)×必然事件的概率是1,不可能事件的概率是0.(3)×当P(A)→0,事件A发生的可能性很小.课堂互动探究题型一事件类型的判断【典例1】在下列事件中,哪些是必然事件?哪些是不可能事件?哪些是随机事件:(1)如果a、b都是实数,那么a+b=b+a;(2)从分别标有1,2,3,4,5,6的6张号签中任取一张,得到4号签;(3)没有水分,种子发芽;(4)某电话总机在60秒内接到至少15个电话;[思路导引]结合必然事件、不可能事件、随机事件的定义可知.[解](1)对任意实数,都满足加法的交换律,故此事件是必然事件.(2)从6张号签中任取一张,得到4号签,此事件可能发生,也可能不发生,故此事件是随机事件.(3)适宜的温度和充足的水分,是种子萌发不可缺少的两个条件,没有水分,种子就不可能发芽,故此事件是不可能事件.(4)电话在60秒内接到至少15次传唤,此事件可能发生,也可能不发生,故此事件是随机事件.判断一个事件是随机事件、必然事件还是不可能事件,首先一定要看条件,其次是看在该条件下所研究的事件是一定发生(必然事件)、不一定发生(随机事件),还是一定不发生(不可能事件).[针对训练1]指出下列事件是必然事件、不可能事件还是随机事件:(1)某人购买福利彩票一注,中奖500万元;(2)三角形的内角和为180°;(3)没有空气和水,人类可以生存下去;(4)同时抛掷两枚硬币一次,都出现正面向上;(5)科学技术达到一定水平后,不需任何能量的“永动机”将会出现.[解](1)购买一注彩票,可能中奖,也可能不中奖,所以是随机事件.(2)所有三角形的内角和均为180°,所以是必然事件.(3)空气和水是人类生存的必要条件,没有空气和水,人类无法生存,所以是不可能事件.(4)同时抛掷两枚硬币一次,不一定都是正面向上,所以是随机事件.(5)由能量守恒定律可知,不需任何能量的“永动机”不会出现,所以是不可能事件.题型二随机事件的频率与概率【典例2】某大学艺术专业400名学生参加某次测评,根据男女学生人数比例,使用分层抽样的方法从中随机抽取了100名学生,记录他们的分数,将数据分成7组:[20,30),[30,40),…,[80,90],并整理得到如图频率分布直方图:(1)从总体的400名学生中随机抽取一人,估计其分数小于70的概率;(2)已知样本中分数小于40的学生有5人,试估计总体中分数在区间[40,50)内的人数;(3)已知样本中有一半男生的分数不小于70,且样本中分数不小于70的男女生人数相等.试估计总体中男生和女生人数的比例.[思路导引](1)根据频率分布直方图求出样本中分数小于70的频率,然后利用频率估计概率;(2)计算出样本中分数在[40,50)内的人数,然后按比例求出总体中分数在此范围内的人数;(3)先求出样本中男女生人数,然后利用样本比例估计总体比例.[解](1)根据频率分布直方图可知,样本中分数不小于70的频率为(0.02+0.04)×10=0.6,所以样本中分数小于70的频率为1-0.6=0.4,所以从总体的400名学生中随机抽取一人,其分数小于70的概率估计为0.4.(2)根据题意,样本中分数不小于50的频率为(0.01+0.02+0.04+0.02)×10=0.9,分数在区间[40,50)内的人数为100-100×0.9-5=5.所以总体中分数在区间[40,50)内的人数估计为400×5100=20人.(3)由题意知,样本中分数不小于70的学生人数为(0.02+0.04)×10×100=60,所以样本中分数不小于70的男生人数为60×12=30,所以样本中男生人数为30×2=60人,女生人数为100-60=40人,男生和女生的比例为60∶40=3∶2.故总体中男生和女生人数比例为3∶2.随机事件在一次试验中是否发生虽然不能事先确定,但是在大量重复试验的情况下,随机事件的发生呈现一定的规律性,因而,可以从统计的角度,通过计算事件发生的频率去估算概率.此类题目的解题方法是:先利用频率的计算公式依次计算出各个频率值,然后根据频率与概率的关系估计事件发生的概率.[针对训练2]某保险公司利用简单随机抽样的方法,对投保车辆进行抽样,样本车辆中每辆车的赔付结果统计如下:赔付金额(元)01000200030004000车辆数(辆)500130100150120(1)若每辆车的投保金额均为2800元,估计赔付金额大于投保金额的概率;(2)在样本车辆中,车主是新司机的占10%,在赔付金额为4000元的样本车辆中,车主是新司机的占20%,估计在已投保车辆中,新司机获赔金额为4000元的概率.[解](1)设A表示事件“赔付金额为3000元”,B表示事件“赔付金额为4000元”,以频率估计概率得P(A)=1501000=0.15,P(B)=1201000=0.12.由于投保金额为2800元,赔付金额大于投保金额对应的情形是3000元和4000元,所以其概率为P(A)+P(B)=0.15+0.12=0.27.(2)设C表示事件“投保车辆中新司机获赔4000元”,由已知,样本车辆中车主为新司机的有0.1×1000=100辆,而赔付金额为4000元的车辆中,车主为新司机的有0.2×120=24辆.所以样本车辆中新司机车主获赔金额为4000元的频率为24100=0.24.由频率估计概率得P(C)=0.24.题型三试验结果分析【典例3】某人做试验,从一个装有标号为1,2,3,4的小球的盒子中,无放回地取两个小球,每次取一个,先取的小球的标号为x,后取的小球的标号为y,这样构成有序实数对(x,y).(1)写出这个试验的所有结果;(2)写出“第一次取出的小球上的标号为2”这一事件.[思路导引]根据日常生活的经验按一定的顺序逐个列出全部结果.[解](1)当x=1时,y=2,3,4;当x=2时,y=1,3,4;当x=3时,y=1,2,4;当x=4时,y=1,2,3.因此,这个试验的所有结果是(1,2),(1,3),(1,4),(2,1),(2,3),(2,4),(3,1),(3,2),(3,4),(4,1),(4,2),(4,3).(2)记“第一次取出的小球上的标号为2”为事件A,则A={(2,1),(2,3),(2,4)}.列举试验所有可能结果的方法(1)结果是相对于条件而言的,要弄清试验的结果,必须首先明确试验中的条件;(2)根据日常生活经验,按照一定的顺序列举出所有可能的结果,可应用画树形图、列表等方法解决.[针对训练3]袋中装有大小相同的红、白、黄、黑4个球,分别写出以下随机试验的条件和结果.(1)从中任取1球;(2)从中任取2球.[解](1)条件为:从袋中任取1球.结果为:红、白、黄、黑4种.(2)条件为:从袋中任取2球.若记(红,白)表示一次试验中,取出的是红球与白球,结果为:(红,白),(红,黄),(红,黑),(白,黄),(白,黑),(黄,黑)6种.课堂归纳小结1.对随机事件的频率与概率的理解对于一个随机事件而言,其频率是在[0,1]内变化的一个数,并且随着试验次数的增加,随机事件发生的频率逐渐稳定在某个常数附近,这个常数就是概率.因此可以说,频率是变化的,而概率是不变的,是客观存在的.2.频率反映事件发生的频繁程度,概率反映事件发生的可能性大小.3.频率是不能脱离具体的n次试验的实验值,而概率是具有确定性的不依赖于试验次数的理论值.4.频率是概率的近似值,概率是频率的稳定值.

1 / 30
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功