2.3等比数列2.3.1等比数列第二课时等比数列的性质自主学习梳理知识课前基础梳理|目标索引|1.在理解掌握等比数列定义和通项公式的基础上,探索发现等比数列的性质.2.体会类比、归纳的数学思想在解决具体问题中的作用,体会等比数列与等差数列的联系.3.能够熟练地应用等比数列的性质解决相关问题,提高分析问题和解决问题的能力.等比数列的性质若数列{an}是公比为q的等比数列,则(1)an=___________(m,n∈N*);(2)若m+n=p+q=2k(m,n,p,q,k∈N*),则am·an=___________=___________;(3){c·an}(c是非零常数)是公比为___________的等比数列;(4){|an|}是公比为___________的等比数列;amqn-map·aqa2kq|q|(5){amn}(m是整数常数)是公比为___________的等比数列.特别的,若数列{an}是正项等比数列时,数列{amn}(m是实数常数)是公比为___________的等比数列;(6)若{an},{bn}分别是公比为q1,q2的等比数列,则数列{an·bn}是公比为___________的等比数列.qmqmq1·q21.等比数列{an}满足a1=3,a1+a3+a5=21,则a3+a5+a7=()A.21B.42C.63D.84解析:设等比数列的公比为q,则a1+a3+a5=a1+a1q2+a1q4=21,∵a1=3,∴q4+q2-6=0,∴q2=2,∴a3+a5+a7=(a1+a3+a5)q2=21×2=42.故选B.答案:B2.在等比数列{an}中,若a1·a2·a3·a4=1,a13·a14·a15·a16=8,则a41·a42·a43·a44=________.解析:设等比数列{an}的公比为q,则a13·a14·a15·a16a1·a2·a3·a4=q48=8,∴q16=2,∴a41·a42·a43·a44=a1·q40·a2·q40·a3·q40·a4·q40=(a1·a2·a3·a4)·q160=1×210=1024.答案:10243.在等比数列{an}中,a3,a15是方程x2-6x+8=0的两根,则a1a17a9=________.解析:由题可知a3+a15=60,a3·a15=80,∴a3与a15都为正数,∴a9为正数,由a29=a3·a15=8,∴a9=22,则a1a17a9=a29a9=a9=22.答案:22典例精析规律总结课堂互动探究(1)(2018·江西赣州月考)已知在等比数列{an}中,an0,a1,a99是方程x2-10x+16=0的两根,则a20a50a80的值为()A.32B.64C.256D.±64(2)(2018·辽宁盘锦月考)已知{an}是等比数列,若a4+a6=10,则a1a7+2a3a7+a3a9=()A.10B.20C.60D.100【解析】(1)由题可知a1·a99=16,∴a250=a1·a99=16,又an0,∴a50=4,∴a20a50a80=a350=64,故选B.(2)a1a7+2a3a7+a3a9=a24+2a4·a6+a26=(a4+a6)2=100,故选D.【答案】(1)B(2)D【知识点拨】在等比数列的有关运算中,常涉及次数较高的指数运算,若按常规解法,往往是建立a1和q的方程(组),这样解起来较麻烦.而采用等比数列性质,进行整体变换,会起到化繁为简的效果.在等比数列{an}中,(1)若a1+a2+a3=21,a1a2a3=216,求an;(2)若a3a5=18,a4a8=72,求公比q;(3)已知等比数列{an}满足an0(n∈N*),且a5a2n-5=22n(n≥3),则当n≥1时,求log2a1+log2a3+log2a5+…+log2a2n-1的值.解:(1)∵a1a2a3=a32=216,∴a2=6,∴a1a3=36,且a1+a3=21-a2=15.∴a1,a3是方程x2-15x+36=0的两根,解方程得x1=3,x2=12.当a1=3时,q=a2a1=2,an=3·2n-1;当a1=12时,q=12,an=12·12n-1.(2)∵a4a8=a3q·a5q3=a3a5q4=18q4=72,∴q4=4,故q=±2.(3)由等比数列的性质可知a5a2n-5=a2n,又a5a2n-5=22n,所以an=2n.又log2a2n-1=log222n-1=2n-1,所以log2a1+log2a3+log2a5+…+log2a2n-1=1+3+5+…+(2n-1)=[1+2n-1]n2=n2.已知等差数列{an}中,a2+a3=14,a4-a1=6.(1)求数列{an}的通项公式;(2)设等比数列{bn}满足b2=a1,b3=a3,若b6=am,求实数m的值.【解】(1)设等差数列{an}的公差为d,∵a2+a3=14,a4-a1=6,∴2a1+3d=14,3d=6,解得d=2,a1=4.∴an=4+2(n-1)=2n+2.(2)设等比数列{bn}的公比为q,∵b2=a1,b3=a3,∴b1q=4,b1q2=8,解得q=2,b1=2,∴bn=2n.∵b6=am,∴26=2m+2,解得m=31.(2018·河北邯郸月考)已知{an}为等差数列,且满足a1+a3=8,a2+a4=12.(1)求数列{an}的通项公式;(2)记{an}的前n项和为Sn,若a3,ak+1,Sk成等比数列,求正整数k的值.解:(1)由题可知a1+a1+2d=8,a1+d+a1+3d=12,解得a1=2,d=2,∴an=2+2(n-1)=2n.(2)Sn=na1+nn-12d=n2+n,若a3,ak+1,Sk成等比数列,∴a2k+1=a3·Sk,即4(k+1)2=6(k2+k),解得k=2或k=-1(舍去).∴正整数k的值为2.即学即练稳操胜券基础知识达标1.(2018·河南长葛质检)已知数列{an}满足log3an+1=1+log3an(n∈N*),且a2+a4+a6=9,则log(a5+a7+a9)的值是()A.-15B.-5C.5D.15解析:由log3an+1=1+log3an,得an+1=3an,∴数列{an}为等比数列,公比为3,由a2+a4+a6=9,知a5+a7+a9=a2·q3+a4·q3+a6q3=(a2+a4+a6)q3=35,∴log(a5+a7+a9)=-5.故选B.答案:B2.在等比数列{an}中,若a1=19,a4=3,则该数列前五项的积为()A.±3B.3C.±1D.1解析:∵q3=a4a1=27,∴q=3,∴a3=1.∴a1a2a3a4a5=a53=1,故选D.答案:D3.设{an}是公比为q的等比数列,令bn=an+1,n∈N+,若数列{bn}的连续四项在集合{-53,-23,19,37,82}中,则q等于()A.-43B.-32C.-32或-23D.-34或-43解析:由题可知an∈{-54,-24,18,36,81},∴-24,36,-54,81是数列{an}中的项,∴q=36-24=-32或q=-2436=-23,故选C.答案:C4.已知{an}为等比数列,a5+a8=2,a6·a7=-8,则a2+a11=()A.5B.7C.-7D.-5解析:∵{an}为等比数列,∴a6·a7=a5·a8,∴a5+a8=2,a5·a8=-8,∴a5=-2,a8=4或a5=4,a8=-2,∴q3=a8a5=-2或q3=-12,当q3=-2时,a2+a11=a5q3+a8·q3=-7;当q3=-12时,a2+a11=4×(-2)+(-2)×-12=-7,故选C.答案:C5.(2019·广西南宁月考)已知公差不为零的等差数列{an}的前n项和为Sn,若S10=110,且a1,a2,a4成等比数列.(1)求数列{an}的通项公式;(2)设数列{bn}满足bn=1an-1an+1,若数列{bn}前n项和为Tn,证明:13≤Tn12.解:(1)设等差数列{an}的公差为d,则10a1+10×92d=110,a1+d2=a1a1+3d,解得a1=2,d=2.∴an=2n.(2)证明:bn=1an-1an+1=12n-12n+1=1212n-1-12n+1,∴Tn=121-13+13-15+…+12n-1-12n+1=121-12n+1=12-14n+2,∴Tn12,又{Tn}是递增的数列,∴Tn≥T1=13,∴13≤Tn12.