2019-2020学年高中数学 第2章 平面解析几何初步 2.3.4 圆与圆的位置关系课件 新人教B

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

第二章平面解析几何初步2.3圆的方程2.3.4圆与圆的位置关系学习目标核心素养1.掌握圆与圆的位置关系及判定方法.(重点)2.了解两圆相交或相切时一些简单的几何性质的应用.(重点)3.掌握利用圆的对称性灵活解决问题的方法.(难点)1.通过学习圆与圆的位置关系,培养直观想象的核心素养.2.借助圆与圆的位置关系的判断,培养数学运算的核心素养.自主预习探新知1.圆与圆的位置关系圆与圆的位置关系有五种,分别为____、____、____、____、____.外离外切相交内切内含2.圆与圆的位置关系的判定(1)几何法:若两圆的半径分别为r1、r2,两圆的圆心距为d,则两圆的位置关系的判断方法如下:位置关系外离外切相交内切内含图示d与r1、r2的关系________________________________________________________d>r1+r2d=r1+r2|r1-r2|<d<r1+r2d=|r1-r2|0≤d<|r1-r2|(2)代数法:通过两圆方程组成方程组的公共解的个数进行判断.圆C1方程圆C2方程――→消元一元二次方程Δ0⇒____Δ=0⇒__________Δ0⇒__________相交内切或外切外离或内含1.两圆x2+y2=r2与(x-2)2+(y+1)2=r2(r>0)外切,则r的值是()A.5B.5C.52D.25C[∵两圆外切,∴圆心距d=0-22+0+12=2r,解得r=52.]2.两圆x2+y2=9和x2+y2-8x+6y+9=0的位置关系是()A.外离B.相交C.内切D.外切B[两圆x2+y2=9和x2+y2-8x+6y+9=0的圆心分别为(0,0)和(4,-3),半径分别为3和4.所以两圆的圆心距d=42+-32=5.又4-353+4,故两圆相交.]3.已知两圆x2+y2=10和(x-1)2+(y-3)2=20相交于A,B两点,则直线AB的方程是________.x+3y=0[圆的方程(x-1)2+(y-3)2=20可化为x2+y2-2x-6y=10,又x2+y2=10,两式相减得2x+6y=0,即x+3y=0.]合作探究提素养圆与圆位置关系的判定【例1】当实数k为何值时,两圆C1:x2+y2+4x-6y+12=0,C2:x2+y2-2x-14y+k=0相交、相切、相离?[思路探究]求圆C1的半径r1→求圆C2的半径r2→求|C1C2|→利用|C1C2|与|r1-r2|和r1+r2的关系求k[解]将两圆的一般方程化为标准方程,C1:(x+2)2+(y-3)2=1,C2:(x-1)2+(y-7)2=50-k.圆C1的圆心为C1(-2,3),半径r1=1;圆C2的圆心为C2(1,7),半径r2=50-k(k<50).从而|C1C2|=-2-12+3-72=5.当1+50-k=5,k=34时,两圆外切.当|50-k-1|=5,50-k=6,k=14时,两圆内切.当|r2-r1|<|C1C2|<r2+r1,即14<k<34时,两圆相交.当1+50-k<5或|50-k-1|>5,即0≤k<14或34<k<50时,两圆相离.1.判断两圆的位置关系或利用两圆的位置关系求参数的取值范围问题有以下几个步骤:(1)化成圆的标准方程,写出圆心和半径;(2)计算两圆圆心的距离d;(3)通过d,r1+r2,|r1-r2|的关系来判断两圆的位置关系或求参数的范围,必要时可借助于图形,数形结合.2.应用几何法判定两圆的位置关系或求字母参数的范围是非常简单清晰的,要理清圆心距与两圆半径的关系.1.已知圆C1:x2+y2-2ax-2y+a2-15=0,圆C2:x2+y2-4ax-2y+4a2=0(a>0).试求a为何值时,两圆C1,C2的位置关系为:(1)相切;(2)相交;(3)外离;(4)内含.[解]圆C1,C2的方程,经配方后可得C1:(x-a)2+(y-1)2=16,C2:(x-2a)2+(y-1)2=1,∴圆心C1(a,1),C2(2a,1),半径r1=4,r2=1.∴|C1C2|=a-2a2+1-12=a.(1)当|C1C2|=r1+r2=5,即a=5时,两圆外切;当|C1C2|=r1-r2=3,即a=3时,两圆内切.(2)当3<|C1C2|<5,即3<a<5时,两圆相交.(3)当|C1C2|>5,即a>5时,两圆外离.(4)当|C1C2|<3,即0a<3时,两圆内含.两圆相交的有关问题【例2】(1)圆O1:x2+y2-4x+6y=0和圆Q2:x2+y2-6x=0交于A,B两点,则线段AB的垂直平分线的方程是______________.(2)经过两圆x2+y2+6x-4=0和x2+y2+6y-28=0的交点且圆心在直线x-y-4=0上的圆的方程为____________.(1)3x-y-9=0(2)x2+y2-x+7y-32=0[(1)两圆的方程相减得AB的方程为x+3y=0,圆O1的圆心为(2,-3),所以线段AB的垂直平分线的方程为y+3=3(x-2),即3x-y-9=0.(2)解方程组x2+y2+6x-4=0,x2+y2+6y-28=0,得两圆的交点A(-1,3),B(-6,-2).设所求圆的圆心为(a,b),因圆心在直线x-y-4=0上,故b=a-4.则有a+12+a-4-32=a+62+a-4+22,解得a=12,故圆心为12,-72,半径为12+12+-72-32=892.故圆的方程为x-122+y+722=892,即x2+y2-x+7y-32=0.]1.求两圆的公共弦所在直线的方程的方法:将两圆方程相减即得两圆公共弦所在直线方程,但必须注意只有当两圆方程中二次项系数相同时,才能如此求解,否则应先调整系数.2.求两圆公共弦长的方法:一是联立两圆方程求出交点坐标,再用距离公式求解;二是先求出两圆公共弦所在的直线方程,再利用半径长、弦心距和弦长的一半构成的直角三角形求解.3.已知圆C1:x2+y2+D1x+E1y+F1=0与圆C2:x2+y2+D2x+E2y+F2=0相交,则过两圆交点的圆的方程可设为x2+y2+D1x+E1y+F1+λ(x2+y2+D2x+E2y+F2)=0(λ≠-1).2.求两圆x2+y2-2x+10y-24=0和x2+y2+2x+2y-8=0的公共弦所在直线的方程及公共弦长.[解]联立两圆的方程得方程组x2+y2-2x+10y-24=0,x2+y2+2x+2y-8=0,两式相减得x-2y+4=0,此即为两圆公共弦所在直线的方程.法一:设两圆相交于点A,B,则A,B两点坐标满足方程组x-2y+4=0,x2+y2+2x+2y-8=0,解得x=-4,y=0或x=0,y=2.所以|AB|=-4-02+0-22=25,即公共弦长为25.法二:由x2+y2-2x+10y-24=0,得(x-1)2+(y+5)2=50,其圆心坐标为(1,-5),半径长r=52,圆心到直线x-2y+4=0的距离为d=|1-2×-5+4|1+-22=35.设公共弦长为2l,由勾股定理得r2=d2+l2,即50=(35)2+l2,解得l=5,故公共弦长2l=25.圆与圆的相切问题[探究问题]1.圆与圆相切是什么意思?[提示]两圆相切指得是内切和外切两种情况.2.两圆相切可用什么方法求解?[提示](1)几何法,利用圆心距d与两半径R,r之间的关系求得d=R+r为外切,d=|R-r|为内切.(2)代数法,将两圆联立消去x或y得到关于y或x的一元二次方程,利用Δ=0求解.【例3】求与圆x2+y2-2x=0外切且与直线x+3y=0相切于点M(3,-3)的圆的方程.[思路探究]设圆的方程,利用两圆外切和直线与圆相切建立方程组求得.[解]设所求圆的方程为(x-a)2+(y-b)2=r2(r>0),由题知所求圆与圆x2+y2-2x=0外切,则a-12+b2=r+1.①又所求圆过点M的切线为直线x+3y=0,故b+3a-3=3.②|a+3b|2=r.③解由①②③组成的方程组得a=4,b=0,r=2或a=0,b=-43,r=6.故所求圆的方程为(x-4)2+y2=4或x2+(y+43)2=36.1.将本例变为“求与圆x2+y2-2x=0外切,圆心在x轴上,且过点(3,-3)的圆的方程”,如何求?[解]因为圆心在x轴上,所以可设圆心坐标为(a,0),设半径为r,则所求圆的方程为(x-a)2+y2=r2,又因为与圆x2+y2-2x=0外切,且过点(3,-3),所以a-12+02=r+1,3-a2+-32=r2,解得a=4,r=2,所以圆的方程为(x-4)2+y2=4.2.将本例改为“若圆x2+y2-2x=0与圆x2+y2-8x-8y+m=0相外切,试求实数m的值.”[解]圆x2+y2-2x=0的圆心为A(1,0),半径为r1=1,圆x2+y2-8x-8y+m=0的圆心为B(4,4),半径为r2=32-m.因为两圆相外切,所以4-12+4-02=1+32-m,解得:m=16.处理两圆相切问题的两个步骤1.定性,即必须准确把握是内切还是外切,若只是告诉相切,则必须考虑分两圆内切还是外切两种情况讨论.2.转化思想,即将两圆相切的问题转化为两圆的圆心距等于两圆半径之差的绝对值(内切时)或两圆半径之和(外切时).1.本节课的重点是理解并掌握圆与圆的位置关系,会利用方程判断圆与圆的位置关系,以及解决有关问题,难点是利用方程判断圆与圆的位置关系及利用直线与圆的方程解决简单的实际生活问题.2.本节课要重点掌握的规律方法(1)判断两圆位置关系的方法及应用.(2)求两圆公共弦长的方法.3.本节课的易错点是判断两圆位置关系时易忽略相切的两种情况而丢解.当堂达标固双基1.判断(正确的打“√”,错误的打“×”)(1)如果两个圆的方程组成的方程组只有一组实数解,则两圆外切.()(2)如果两圆的圆心距小于两圆的半径之和,则两圆相交.()(3)从两圆的方程中消掉二次项后得到的二元一次方程是两圆的公共弦所在的直线方程.()[答案](1)×(2)×(3)×[提示](1)错误,还可能是内切.(2)错误,还需要大于两半径之差的绝对值.(3)错误,在相交的情况才是.2.圆O1:x2+y2-2x=0和圆O2:x2+y2-4y=0的位置关系为()A.外离B.相交C.外切D.内切B[圆O1的圆心坐标为(1,0),半径长r1=1;圆O2的圆心坐标为(0,2),半径长r2=2;1=r2-r1<|O1O2|=5<r1+r2=3,即两圆相交.]3.圆C1:(x-m)2+(y+2)2=9与圆C2:(x+1)2+(y-m)2=4外切,则m的值为________.2或-5[C1(m,-2),r1=3,C2(-1,m),r2=2,由题意得|C1C2|=5,即(m+1)2+(m+2)2=25,解得m=2或m=-5.]4.已知圆C1:x2+y2+2x-6y+1=0,圆C2:x2+y2-4x+2y-11=0,求两圆的公共弦所在的直线方程及公共弦长.[解]设两圆交点为A(x1,y1),B(x2,y2),则A,B两点坐标是方程组x2+y2+2x-6y+1=0,①x2+y2-4x+2y-11=0②的解,①-②得:3x-4y+6=0.∵A,B两点坐标都满足此方程,∴3x-4y+6=0即为两圆公共弦所在的直线方程.易知圆C1的圆心(-1,3),半径r1=3.又C1到直线AB的距离为d=|-1×3-4×3+6|32+-42=95.∴|AB|=2r21-d2=232-952=245.即两圆的公共弦长为245.

1 / 42
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功