2019-2020学年高中数学 第2章 概率 2.2.2 事件的独立性课件 新人教B版选修2-3

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

第二章概率2.2条件概率与事件的独立性2.2.2事件的独立性学习目标:1.理解相互独立事件的定义及意义.(难点)2.理解概率的乘法公式.(易混点)3.掌握综合运用互斥事件的概率加法公式及独立事件的乘法公式解题.(重点)自主预习探新知教材整理事件的相互独立性阅读教材P50~P52例2以上部分,完成下列问题.1.定义设A,B为两个事件,若事件A是否发生对事件B发生的概率没有影响,即,则称两个事件A,B相互独立,并把这两个事件叫做.P(B|A)=P(B)相互独立事件2.性质(1)当事件A,B相互独立时,A与,A与,与也相互独立.(2)若事件A,B相互独立,则P(B)=P(B|A)=PA∩BPA,P(A∩B)=.3.n个事件相互独立对于n个事件A1,A2,…,An,如果其中任一个事件发生的概率不受的影响,则称n个事件A1,A2,…,An相互独立.BBABP(A)P(B)其他事件是否发生4.n个相互独立事件的概率公式如果事件A1,A2,…,An相互独立,那么这n个事件都发生的概率,等于,即P(A1∩A2∩…∩An)=P(A1)×P(A2)×…×P(An),并且上式中任意多个事件Ai换成其对立事件后等式仍成立.每个事件发生的概率的积下列说法正确有________.(填序号)①对事件A和B,若P(B|A)=P(B),则事件A与B相互独立;②若事件A,B相互独立,则P(A∩B)=P(A)×P(B);③如果事件A与事件B相互独立,则P(B|A)=P(B);④若事件A与B相互独立,则B与B相互独立.【解析】若P(B|A)=P(B),则P(A∩B)=P(A)·P(B),故A,B相互独立,所以①正确;若事件A,B相互独立,则A,B也相互独立,故②正确;若事件A,B相互独立,则A发生与否不影响B的发生,故③正确;④B与B相互对立,不是相互独立,故④错误.【答案】①②③合作探究提素养【例1】判断下列各对事件是否是相互独立事件.(1)甲组3名男生,2名女生;乙组2名男生,3名女生,现从甲、乙两组中各选1名同学参加演讲比赛,“从甲组中选出1名男生”与“从乙组中选出1名女生”;(2)容器内盛有5个白乒乓球和3个黄乒乓球,“从8个球中任意取出1个,取出的是白球”与“从剩下的7个球中任意取出1个,取出的还是白球”;(3)掷一颗骰子一次,“出现偶数点”与“出现3点或6点”.相互独立事件的判断【精彩点拨】(1)利用独立性概念的直观解释进行判断.(2)计算“从8个球中任取一球是白球”发生与否,事件“从剩下的7个球中任意取出一球还是白球”的概率是否相同进行判断.(3)利用事件的独立性定义式判断.【解】(1)“从甲组中选出1名男生”这一事件是否发生,对“从乙组中选出1名女生”这一事件发生的概率没有影响,所以它们是相互独立事件.(2)“从8个球中任意取出1个,取出的是白球”的概率为58,若这一事件发生了,则“从剩下的7个球中任意取出1个,取出的仍是白球”的概率为47;若前一事件没有发生,则后一事件发生的概率为57,可见,前一事件是否发生,对后一事件发生的概率有影响,所以二者不是相互独立事件.(3)记A:出现偶数点,B:出现3点或6点,则A={2,4,6},B={3,6},AB={6},∴P(A)=36=12,P(B)=26=13,P(A∩B)=16.∴P(A∩B)=P(A)·P(B),∴事件A与B相互独立.判断事件是否相互独立的方法1.定义法:事件A,B相互独立⇔P(A∩B)=P(A)·P(B).2.由事件本身的性质直接判定两个事件发生是否相互影响.3.条件概率法:当P(A)0时,可用P(B|A)=P(B)判断.1.(1)下列事件中,A,B是相互独立事件的是()A.一枚硬币掷两次,A=“第一次为正面”,B=“第二次为反面”B.袋中有2白,2黑的小球,不放回地摸两球,A=“第一次摸到白球”,B=“第二次摸到白球”C.掷一枚骰子,A=“出现点数为奇数”,B=“出现点数为偶数”D.A=“人能活到20岁”,B=“人能活到50岁”(2)甲、乙两名射手同时向一目标射击,设事件A:“甲击中目标”,事件B:“乙击中目标”,则事件A与事件B()A.相互独立但不互斥B.互斥但不相互独立C.相互独立且互斥D.既不相互独立也不互斥【解析】(1)把一枚硬币掷两次,对于每次而言是相互独立的,其结果不受先后影响,故A项是相互独立事件;B中是不放回地摸球,显然A事件与B事件不相互独立;对于C,A,B应为互斥事件,不相互独立;D是条件概率,事件B受事件A的影响.故选A.(2)对同一目标射击,甲、乙两射手是否击中目标是互不影响的,所以事件A与B相互独立;对同一目标射击,甲、乙两射手可能同时击中目标,也就是说事件A与B可能同时发生,所以事件A与B不是互斥事件.故选A.【答案】(1)A(2)A【例2】面对某种流感病毒,各国医疗科研机构都在研究疫苗,现有A,B,C三个独立的研究机构在一定的时期内能研制出疫苗的概率分别是15,14,13.求:(1)他们都研制出疫苗的概率;(2)他们都失败的概率;(3)他们能够研制出疫苗的概率.相互独立事件发生的概率【精彩点拨】明确已知事件的概率及其关系→把待求事件的概率表示成已知事件的概率→选择公式计算求值【解】令事件A,B,C分别表示A,B,C三个独立的研究机构在一定时期内成功研制出该疫苗,依题意可知,事件A,B,C相互独立,且P(A)=15,P(B)=14,P(C)=13.(1)他们都研制出疫苗,即事件A,B,C同时发生,故P(A∩B∩C)=P(A)×P(B)×P(C)=15×14×13=160.(2)他们都失败即事件A,B,C同时发生,故P(A∩B∩C)=P(A)×P(B)×P(C)=(1-P(A))(1-P(B))(1-P(C))=1-151-141-13=45×34×23=25.(3)“他们能研制出疫苗”的对立事件为“他们都失败”,结合对立事件间的概率关系可得所求事件的概率P=1-P(A∩B∩C)=1-25=35.1.求相互独立事件同时发生的概率的步骤(1)首先确定各事件之间是相互独立的;(2)确定这些事件可以同时发生;(3)求出每个事件的概率,再求积.2.使用相互独立事件同时发生的概率计算公式时,要掌握公式的适用条件,即各个事件是相互独立的,而且它们能同时发生.2.一个袋子中有3个白球,2个红球,每次从中任取2个球,取出后再放回,求:(1)第1次取出的2个球都是白球,第2次取出的2个球都是红球的概率;(2)第1次取出的2个球1个是白球、1个是红球,第2次取出的2个球都是白球的概率.【解】记“第1次取出的2个球都是白球”的事件为A,“第2次取出的2个球都是红球”的事件为B,“第1次取出的2个球中1个是白球、1个是红球”的事件为C,很明显,由于每次取出后再放回,A,B,C都是相互独立事件.(1)P(A∩B)=P(A)P(B)=C23C25×C22C25=310×110=3100.故第1次取出的2个球都是白球,第2次取出的2个球都是红球的概率是3100.(2)P(C∩A)=P(C)P(A)=C13·C12C25·C23C25=610·310=950.故第1次取出的2个球中1个是白球、1个是红球,第2次取出的2个球都是白球的概率是950.[探究问题]1.甲、乙二人各进行一次射击比赛,记A=“甲击中目标”,B=“乙击中目标”,试问事件A与B是相互独立事件,还是互斥事件?事件A∩B与A∩B呢?【提示】事件A与B,A与B,A与B均是相互独立事件,而A∩B与A∩B是互斥事件.事件的相互独立性与互斥性2.在探究1中,若甲、乙二人击中目标的概率均是0.6,如何求甲、乙二人恰有一人击中目标的概率?【提示】“甲、乙二人恰有1人击中目标”记为事件C,则C=A∩B+A∩B.所以P(C)=P(A∩B+A∩B)=P(A∩B)+P(A∩B)=P(A)·P(B)+P(A)·P(B)=(1-0.6)×0.6+0.6×(1-0.6)=0.48.3.由探究1、2,你能归纳出相互独立事件与互斥事件的区别吗?【提示】相互独立事件与互斥事件的区别相互独立事件互斥事件条件事件A(或B)是否发生对事件B(或A)发生的概率没有影响不可能同时发生的两个事件符号相互独立事件A,B同时发生,记做:AB互斥事件A,B中有一个发生,记做:A∪B(或A+B)计算公式P(A∩B)=P(A)P(B)P(A∪B)=P(A)+P(B)【例3】红队队员甲、乙、丙与蓝队队员A,B,C进行围棋比赛,甲对A、乙对B、丙对C各一盘.已知甲胜A、乙胜B、丙胜C的概率分别为0.6,0.5,0.5.假设各盘比赛结果相互独立.求:(1)红队中有且只有一名队员获胜的概率;(2)求红队至少两名队员获胜的概率.【精彩点拨】弄清事件“红队有且只有一名队员获胜”与事件“红队至少两名队员获胜”是由哪些基本事件组成的,及这些事件间的关系,然后选择相应概率公式求值.【解】设甲胜A的事件为D,乙胜B的事件为E,丙胜C的事件为F,则D,E,F分别表示甲不胜A、乙不胜B、丙不胜C的事件.因为P(D)=0.6,P(E)=0.5,P(F)=0.5,由对立事件的概率公式知P(D)=0.4,P(E)=0.5,P(F)=0.5.(1)红队有且只有一名队员获胜的事件有D∩E∩F,D∩E∩F,D∩E∩F,以上3个事件彼此互斥且独立.∴红队有且只有一名队员获胜的概率P1=P[(D∩E∩F)∪(D∩E∩F)∪(D∩E∩F)]=P(D∩E∩F)+P(D∩E∩F)+P(D∩E∩F)=0.6×0.5×0.5+0.4×0.5×0.5+0.4×0.5×0.5=0.35.(2)法一:红队至少两人获胜的事件有:D∩E∩F,D∩E∩F,D∩E∩F,D∩E∩F.由于以上四个事件两两互斥且各盘比赛的结果相互独立,因此红队至少两人获胜的概率为P=P(D∩E∩F)+P(D∩E∩F)+P(D∩E∩F)+P(D∩E∩F)=0.6×0.5×0.5+0.6×0.5×0.5+0.4×0.5×0.5+0.6×0.5×0.5=0.55.法二:“红队至少两人获胜”与“红队最多一人获胜”为对立事件,而红队都不获胜为事件D∩E∩F,且P(D∩E∩F)=0.4×0.5×0.5=0.1.∴红队至少两人获胜的概率为P2=1-P1-P(D∩E∩F)=1-0.35-0.1=0.55.1.本题(2)中用到直接法和间接法.当遇到“至少”“至多”问题可以考虑间接法.2.求复杂事件的概率一般可分三步进行:(1)列出题中涉及的各个事件,并用适当的符号表示它们;(2)理清各事件之间的关系,恰当地用事件间的“并”“交”表示所求事件;(3)根据事件之间的关系准确地运用概率公式进行计算.3.(2019·全国卷Ⅱ)11分制乒乓球比赛,每赢一球得1分,当某局打成10∶10平后,每球交换发球权,先多得2分的一方获胜,该局比赛结束.甲、乙两位同学进行单打比赛,假设甲发球时甲得分的概率为0.5,乙发球时甲得分的概率为0.4,各球的结果相互独立.在某局双方10∶10平后,甲先发球,两人又打了X个球该局比赛结束.(1)求P(X=2);(2)求事件“X=4且甲获胜”的概率.【解】(1)X=2就是某局双方10∶10平后,两人又打了2个球该局比赛结束,则这2个球均由甲得分,或者均由乙得分.因此P(X=2)=0.5×0.4+(1-0.5)×(1-0.4)=0.5.(2)X=4且甲获胜,就是某局双方10∶10平后,两人又打了4个球该局比赛结束,且这4个球的得分情况为:前两球是甲、乙各得1分,后两球均为甲得分.因此所求概率为[0.5×(1-0.4)+(1-0.5)×0.4]×0.5×0.4=0.1.当堂达标固双基1.抛掷3枚质地均匀的硬币,A={既有正面向上又有反面向上},B={至多有一个反面向上},则A与B的关系是()A.互斥事件B.对立事件C.相互独立事件D.不相互独立事件【解析】由已知,有P(A)=1-28=34,P(B)=1-48=12,P(A∩B)=38,满足P(AB)=P(A)P(B),则事件A与事件B相互独立,

1 / 46
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功