第一章空间几何体1.2空间几何体的三视图和直观图1.2.1中心投影与平行投影1.2.2空间几何体的三视图学习目标核心素养1.了解中心投影和平行投影.2.能画出简单空间图形的三视图.(重点)3.能识别三视图所表示的立体模型.(难点)1.通过对中心投影和平行投影学习,培养直观想象的数学素养;2.通过学习三视图,培养逻辑推理、直观想象、数学运算的数学素养.自主预习探新知1.投影的概念及分类定义由于光的照射,在不透明物体后面的屏幕上可以留下这个物体的____,这种现象叫做投影,其中,我们把光线叫做______,把留下物体影子的屏幕叫做______影子投影线投影面中心投影光由____向外散射形成的投影,叫做中心投影.中心投影的投影线交于____分类平行投影在一束____光线照射下形成的投影,叫做平行投影.平行投影的投影线是____的.在平行投影中,投影线____着投影面时,叫做正投影,否则叫做斜投影一点一点平行平行正对2.三视图思考:画三视图时一定要求光线与投射面垂直吗?[提示]正确.由画三视图的规则要求可知正确.1.哪个实例不是中心投影()A.工程图纸B.小孔成像C.相片D.人的视觉A[根据中心投影的概念可知A不是中心投影.]2.如图,小华拿一个矩形木框在阳光下玩,矩形木框在地面上形成的投影不可能是()ABCDA[矩形的投影可以是线段,矩形,平行四边形,但不会是梯形.]棱台[从俯视图来看,上、下底面都是正方形,但大小不一样,可以判断是棱台.]3.有一个几何体的三视图如图所示,这个几何体应是一个________.4.水平放置的下列几何体,正视图是长方形的是________.(填序号)①②③④①③④[①③④的正视图均是长方形,②是等腰三角形.]合作探究提素养中心投影和平行投影A.矩形的平行投影一定是矩形B.梯形的平行投影一定是梯形C.两条相交直线的投影可能平行D.一条线段的中点的平行投影仍是这条线段投影的中点D[矩形的平行投影可能是线段、平行四边形或矩形,梯形的平行投影可能是线段或梯形,两条相交直线的投影还是相交直线.因此A、B、C均错,故D正确.](2)如图所示,在正方体ABCDA1B1C1D1中,M、N分别是BB1、BC的中点,则图中阴影部分在平面ADD1A1上的正投影是()ABCDA[由正投影的定义知,点M、N在平面ADD1A1上的正投影分别是AA1、DA的中点,D在平面ADD1A1上的投影还是D,因此A正确.]判断几何体投影形状的方法及画投影的方法:(1)判断一个几何体的投影是什么图形,先分清楚是平行投影还是中心投影,投影面的位置如何,再根据平行投影或中心投影的性质来判断.(2)画出一个图形在一个平面上的投影的关键是确定该图形的关键点,如顶点、端点等,方法是先画出这些关键点的投影,再依次连接各投影点即可得出此图形在该平面上的投影.1.已知△ABC,选定的投影面与△ABC所在平面平行,则经过中心投影后所得的△A′B′C′与△ABC()A.全等B.相似C.不相似D.以上都不对B[本题主要考查对中心投影的理解.根据题意画出图形,如图所示.由图易得OAOA′=ABA′B′=OBOB′=BCB′C′=OCOC′=ACA′C′,则△ABC∽△A′B′C′.]画空间几何体的三视图【例2】(1)沿一个正方体三个面的对角线截得的几何体如图所示,则该几何体的侧视图为()B[依题意,侧视图中棱的方向是从左上角到右下角.故选B.](2)画出如图所示几何体的三视图:①②[解]①此几何体的三视图如图③所示;②此几何体的三视图如图④所示.1.画组合体三视图的“四个步骤”(1)析:分析组合体的组成形式;(2)分:把组合体分解成简单几何体;(3)画:画分解后的简单几何体的三视图;(4)拼:将各个三视图拼合成组合体的三视图.2.画三视图时要注意的“两个问题”(1)务必做到“正侧一样高,正俯一样长,俯侧一样宽”.(2)把可见轮廓线画成实线,不可见轮廓线要画成虚线,重合的线只画一条.2.螺栓是棱柱和圆柱构成的组合体,如图,画出它的三视图.[解]它的三视图如图所示.由三视图还原几何体[探究问题]1.如何由三视图确定几何体的长、宽、高?[提示]由正视图可确定几何体的长、高;由俯视图可确定几何体的宽.2.如图所示的三视图,其几何体是什么?其正视图、侧视图中的三角形的腰是几何体的侧棱长吗?[提示]由三视图可知,该几何体为正四棱锥,如图所示.正视图、侧视图中三角形的腰长不是四棱柱的侧棱长,应为四棱椎的侧面高线.【例3】(1)若一个几何体的正视图和侧视图都是等腰三角形,俯视图是带圆心的圆,则这个几何体可能是()A.圆柱B.三棱柱C.圆锥D.球体C[正视图和侧视图都是等腰三角形,俯视图是带圆心的圆说明此几何体是圆锥.](2)若某几何体的三视图如图所示,则这个几何体的直观图可以是()ABCDD[对于选项A,B,正视图均不符合要求;对于选项C,俯视图显然不符合要求.只有D符合要求.]由三视图确定几何体一般分两步:第一步:通过正视图和侧视图确定是柱体、锥体还是台体.若正视图和侧视图为矩形,则原几何体为柱体;若正视图和侧视图为等腰三角形,则原几何体为锥体;若正视图和侧视图为等腰梯形,则原几何体为台体.第二步:通过俯视图确定是多面体还是旋转体.若俯视图为多边形,则原几何体为多面体;若俯视图为圆,则原几何体为旋转体.3.根据下列图中所给出的几何体的三视图,试画出它们的形状.①②[解]由三视图的特征,结合柱、锥、台、球及简单组合体的三视图逆推.图①对应的几何体是一个正六棱锥,图②对应的几何体是一个三棱柱,则所对应的空间几何体的图形分别如下:1.三视图的正视图、侧视图、俯视图是分别从几何体的正前方、正左方、正上方观察几何体画出的轮廓线,画几何体三视图的要求是正视图、俯视图长对正,正视图、侧视图高平齐,俯视图、侧视图宽相等,前后对应,画出的三视图要检验是否符合“长对正、高平齐、宽相等”的基本特征.2.画组合体的三视图的步骤特别提醒:画几何体的三视图时,能看见的轮廓线和棱用实线表示,看不见的轮廓线和棱用虚线表示.当堂达标固双基1.中心投影的投影线()A.相互平行B.交于一点C.是异面直线D.在同一平面内B[由中心投影的定义知,中心投影的投影线交于一点,故选B.]2.如图网格纸的各小格都是正方形,粗实线画出的是一个几何体的三视图,则这个几何体是()A.三棱锥B.三棱柱C.四棱锥D.四棱柱B[由题意知,该几何体的三视图为一个三角形,两个四边形,经分析可知该几何体为三棱柱.]3.一个正三棱柱(俯视图为正三角形)的三视图如图所示,则这个三棱柱的高和底面边长分别为________.2,4[由正三棱柱三视图中的数据,知三棱柱的高为2,底面边长为23×23=4.]4.画出如图所示的几何体的三视图.[解]该几何体的三视图如图所示.