欢迎阅读第一章解三角形一.正弦定理:1.正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,并且都等于外接圆的直径,即RCcBbAa2sinsinsin(其中R是三角形外接圆的半径)2.变形:1)sinsinsinsinsinsinabcabcCC.2)化边为角:CBAcbasin:sin:sin::;;sinsinBAba;sinsinCBcb;sinsinCAca3)化边为角:CRcBRbARasin2,sin2,sin24)化角为边:;sinsinbaBA;sinsincbCB;sinsincaCA5)化角为边:RcCRbBRaA2sin,2sin,2sin3.利用正弦定理可以解决下列两类三角形的问题:①已知两个角及任意—边,求其他两边和另一角;例:已知角B,C,a,解法:由A+B+C=180o,求角A,由正弦定理;sinsinBAba;sinsinCBcb;sinsinCAca求出b与c②已知两边和其中—边的对角,求其他两个角及另一边。例:已知边a,b,A,解法:由正弦定理BAbasinsin求出角B,由A+B+C=180o求出角C,再使用正弦定理CAcasinsin求出c边4.△ABC中,已知锐角A,边b,则①Abasin时,B无解;②Abasin或ba时,B有一个解;③baAbsin时,B有两个解。如:①已知32,2,60baA,求B(有一个解)②已知32,2,60abA,求B(有两个解)注意:由正弦定理求角时,注意解的个数。二.三角形面积1.BacAbcCabSABCsin21sin21sin21AbsinAb欢迎阅读2.rcbaSABC)(21,其中r是三角形内切圆半径.3.))()((cpbpappSABC,其中)(21cbap,4.RabcSABC4,R为外接圆半径5.CBARSABCsinsinsin22,R为外接圆半径三.余弦定理1.余弦定理:三角形中任何一边的平方等于其他两边平方的和减去这两边与它们夹角的余弦的积的2倍,即Abccbacos2222Baccabcos2222Cabbaccos22222.变形:bcacbA2cos222acbcaB2cos222abcbaC2cos222注意整体代入,如:21cos222Bacbca3.利用余弦定理判断三角形形状:设a、b、c是C的角、、C的对边,则:①若,,所以为锐角②若为直角Aabc222③若,所以为钝角,则是钝角三角形4.利用余弦定理可以解决下列两类三角形的问题:1)已知三边,求三个角2)已知两边和它们的夹角,求第三边和其他两个角四、应用题欢迎阅读1.已知两角和一边(如A、B、C),由A+B+C=π求C,由正弦定理求a、b.2.已知两边和夹角(如a、b、c),应用余弦定理求c边;再应用正弦定理先求较短边所对的角,然后利用A+B+C=π,求另一角.3.已知两边和其中一边的对角(如a、b、A),应用正弦定理求B,由A+B+C=π求C,再由正弦定理或余弦定理求c边,要注意解可能有多种情况.4.已知三边a、b、c,应用余弦定理求A、B,再由A+B+C=π,求角C.5.方向角一般是指以观测者的位置为中心,将正北或正南方向作为起始方向旋转到目标的方向线所成的角(一般指锐角),通常表达成.正北或正南,北偏东××度,北偏西××度,南偏东××度,南偏西××度.6.俯角和仰角的概念:在视线与水平线所成的角中,视线在水平线上方的角叫仰角,视线在水平线下方的角叫俯角.五、三角形中常见的结论1)三角形三角关系:A+B+C=180°;C=180°—(A+B);2)三角形三边关系:两边之和大于第三边:,,;两边之差小于第三边:,,;3)在同一个三角形中大边对大角:BAbaBAsinsin4)三角形内的诱导公式:sin()sin,ABCcos()cos,ABCtan()tan,ABC)2sin()2cos()22cos()22sin()22tan(2tanCCCCCBA5)两角和与差的正弦、余弦、正切公式铅直线水平线视线视线仰角俯角欢迎阅读(1)sin(α±β)=sinαcosβ±cosαsinβ.(2)cos(α±β)=cosαcosβ∓sinαsinβ.(3)tan(α±β)=tanα±tanβ1∓tanαtanβ.6)二倍角的正弦、余弦、正切公式(1)sin2α=2sinαcosα.(2)cos2α=cos2α-sin2α=2cos2α-1=1-2sin2α.(3)22cos1cos;22cos1sin22(4)tan2α=2tanα1-tan2α.7)三角形的五心:垂心——三角形的三边上的高相交于一点重心——三角形三条中线的相交于一点外心——三角形三边垂直平分线相交于一点内心——三角形三内角的平分线相交于一点旁心——三角形的一条内角平分线与其他两个角的外角平分线交于一点