(浙江专用)2020高考数学二轮复习 专题四 立体几何 第2讲 空间点、线、面的位置关系课件

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

数学第2部分高考热点专题突破专题四立体几何第2讲空间点、线、面的位置关系01考点102考点203考点304专题强化训练[核心提炼]空间线面位置关系判断的常用方法(1)根据空间线面平行、垂直关系的判定定理和性质定理逐项判断来解决问题;(2)必要时可以借助空间几何模型,如从长方体、四面体等模型中观察线面位置关系,并结合有关定理来进行判断.空间线面位置关系的判断[典型例题](1)(2019·绍兴市柯桥区高三期末考试)已知四边形ABCD为梯形,AB∥CD,l为空间一直线,则“l垂直于两腰AD,BC”是“l垂直于两底AB,CD”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件(2)α,β是两个平面,m,n是两条直线,有下列四个命题:①如果m⊥n,m⊥α,n∥β,那么α⊥β.②如果m⊥α,n∥α,那么m⊥n.③如果α∥β,m⊂α,那么m∥β.④如果m∥n,α∥β,那么m与α所成的角和n与β所成的角相等.其中正确的命题有________.(填写所有正确命题的编号)【解析】(1)四边形ABCD为梯形,AB∥CD,l为空间一直线,则“l垂直于两腰AD,BC”,又AD与BC相交,所以l⊥平面ABCD⇒l垂直于两底AB,CD,反之不一定成立.所以“l垂直于两腰AD,BC”是“l垂直于两底AB,CD”的充分不必要条件.故选A.(2)对于命题①,可运用长方体举反例证明其错误:如图,不妨设AA′为直线m,CD为直线n,ABCD所在的平面为α,ABC′D′所在的平面为β,显然这些直线和平面满足题目条件,但α⊥β不成立.命题②正确,证明如下:设过直线n的某平面与平面α相交于直线l,则l∥n,由m⊥α知m⊥l,从而m⊥n,结论正确.由平面与平面平行的定义知命题③正确.由平行的传递性及线面角的定义知命题④正确.【答案】(1)A(2)②③④判断与空间位置关系有关的命题真假的方法(1)借助空间线面平行、面面平行、线面垂直、面面垂直的判定定理和性质定理进行判断.(2)借助于反证法,当从正面入手较难时,可利用反证法,推出与题设或公认的结论相矛盾的命题,进而作出判断.(3)借助空间几何模型,如从长方体模型、四面体模型等模型中观察线面位置关系,结合有关定理,进行肯定或否定.[对点训练]1.(2019·浙江名校协作体高三下学期考试)已知直线m、n与平面α,β,下列命题正确的是()A.m∥α,n∥β且α∥β,则m∥nB.m⊥α,n∥β且α⊥β,则m⊥nC.α∩β=m,m⊥n且α⊥β,则n⊥αD.m⊥α,n⊥β且α⊥β,则m⊥n解析:选D.选项A中,直线m与n还有互为异面的可能;选项B中,直线m与n还有相互平行的可能;选项C中,还有n⊂α的可能;选项D正确,故选D.2.(2019·长沙一模)如图所示,在直角梯形BCEF中,∠CBF=∠BCE=90°,A、D分别是BF、CE上的点,AD∥BC,且AB=DE=2BC=2AF(如图1).将四边形ADEF沿AD折起,连接AC、CF、BE、BF、CE(如图2),在折起的过程中,下列说法错误的是()A.AC∥平面BEFB.B、C、E、F四点不可能共面C.若EF⊥CF,则平面ADEF⊥平面ABCDD.平面BCE与平面BEF可能垂直解析:选D.法一:A选项,连接BD,交AC于点O,取BE的中点M,连接OM,FM,易证四边形AOMF是平行四边形,所以AO∥FM,因为FM⊂平面BEF,AC⊄平面BEF,所以AC∥平面BEF;B选项,若B、C、E、F四点共面,因为BC∥AD,所以BC∥平面ADEF,可推出BC∥EF,又BC∥AD,所以AD∥EF,矛盾;C选项,连接FD,在平面ADEF内,易得EF⊥FD,又EF⊥CF,FD∩CF=F,所以EF⊥平面CDF,所以EF⊥CD,又CD⊥AD,EF与AD相交,所以CD⊥平面ADEF,所以平面ADEF⊥平面ABCD;D选项,延长AF至G,使AF=FG,连接BG、EG,易得平面BCE⊥平面ABF,过F作FN⊥BG于N,则FN⊥平面BCE,若平面BCE⊥平面BEF,则过F作直线与平面BCE垂直,其垂足在BE上,矛盾.综上,选D.法二:构造正方体如图,结合正方体的性质知平面BCE与平面BEF不可能垂直.[核心提炼]1.直线、平面平行的判定及其性质(1)线面平行的判定定理:a⊄α,b⊂α,a∥b⇒a∥α.(2)线面平行的性质定理:a∥α,a⊂β,α∩β=b⇒a∥b.(3)面面平行的判定定理:a⊂β,b⊂β,a∩b=P,a∥α,b∥α⇒α∥β.(4)面面平行的性质定理:α∥β,α∩γ=a,β∩γ=b⇒a∥b.空间平行、垂直关系的证明及求空间角2.直线、平面垂直的判定及其性质(1)线面垂直的判定定理:m⊂α,n⊂α,m∩n=P,l⊥m,l⊥n⇒l⊥α.(2)线面垂直的性质定理:a⊥α,b⊥α⇒a∥b.(3)面面垂直的判定定理:a⊂β,a⊥α⇒α⊥β.(4)面面垂直的性质定理:α⊥β,α∩β=l,a⊂α,a⊥l⇒a⊥β.3.空间角(1)异面直线所成的角,范围α∈0,π2.(2)直线与平面所成的角:如图l∩α=A,P∈l,过点P作PO⊥α交α于O,连接AO,则∠PAO为直线l与平面α所成的角,范围θ∈0,π2.(3)二面角如图,过二面角α­l­β的棱l上一点O在两个半平面内分别作BO⊥l,AO⊥l,则∠AOB就叫做二面角α­l­β的平面角,范围θ∈[0,π].当θ=π2时,二面角叫做直二面角.[典型例题](1)(2019·高考浙江卷)设三棱锥V­ABC的底面是正三角形,侧棱长均相等,P是棱VA上的点(不含端点).记直线PB与直线AC所成的角为α,直线PB与平面ABC所成的角为β,二面角P­AC­B的平面角为γ,则()A.βγ,αγB.βα,βγC.βα,γαD.αβ,γβ(2)(2019·高考浙江卷)如图,已知三棱柱ABC­A1B1C1,平面A1ACC1⊥平面ABC,∠ABC=90°,∠BAC=30°,A1A=A1C=AC,E,F分别是AC,A1B1的中点.①证明:EF⊥BC;②求直线EF与平面A1BC所成角的余弦值.【解】(1)选B.由题意,不妨设该三棱锥的侧棱长与底面边长相等,因为点P是棱VA上的点(不含端点),所以直线PB与平面ABC所成的角β小于直线VB与平面ABC所成的角,而直线VB与平面ABC所成的角小于二面角P­AC­B的平面角γ,所以βγ;因为AC⊂平面ABC,所以直线PB与直线AC所成的角α大于直线PB与平面ABC所成的角β,即αβ.故选B.(2)法一:①证明:如图,连接A1E,因为A1A=A1C,E是AC的中点,所以A1E⊥AC.又平面A1ACC1⊥平面ABC,A1E⊂平面A1ACC1,平面A1ACC1∩平面ABC=AC,所以A1E⊥平面ABC,则A1E⊥BC.又因为A1F∥AB,∠ABC=90°,故BC⊥A1F.所以BC⊥平面A1EF.因此EF⊥BC.②取BC的中点G,连接EG,GF,则EGFA1是平行四边形.由于A1E⊥平面ABC,故A1E⊥EG,所以平行四边形EGFA1为矩形.连接A1G交EF于O,由①得BC⊥平面EGFA1,则平面A1BC⊥平面EGFA1,所以EF在平面A1BC上的射影在直线A1G上.则∠EOG是直线EF与平面A1BC所成的角(或其补角).不妨设AC=4,则在Rt△A1EG中,A1E=23,EG=3.由于O为A1G的中点,故EO=OG=A1G2=152,所以cos∠EOG=EO2+OG2-EG22EO·OG=35.因此,直线EF与平面A1BC所成角的余弦值是35.法二:①连接A1E,因为A1A=A1C,E是AC的中点,所以A1E⊥AC.又平面A1ACC1⊥平面ABC,A1E⊂平面A1ACC1,平面A1ACC1∩平面ABC=AC,所以A1E⊥平面ABC.如图,以点E为原点,分别以射线EC,EA1为y,z轴的正半轴,建立空间直角坐标系E­xyz.不妨设AC=4,则A1(0,0,23),B(3,1,0),B1(3,3,23),F(32,32,23),C(0,2,0).因此,EF→=32,32,23,BC→=(-3,1,0).由EF→·BC→=0得EF⊥BC.②设直线EF与平面A1BC所成角为θ.由①可得BC→=(-3,1,0),A1C→=(0,2,-23).设平面A1BC的法向量为n=(x,y,z).由BC→·n=0,A1C→·n=0,得-3x+y=0,y-3z=0.取n=(1,3,1),故sinθ=|cos〈EF→,n〉|=|EF→·n||EF→|·|n|=45.因此,直线EF与平面A1BC所成角的余弦值为35.(1)平行关系及垂直关系的转化空间平行、垂直关系证明的主要思想是转化,即通过判定、性质定理将线线、线面、面面之间的平行、垂直关系相互转化.(2)求空间角的三个步骤①一作:根据定义作平行线或垂线,用作图法作出要求的角.②二证:证明所作的角就是要求的角.③三求:把空间角问题转化为(三角形)平面问题,解三角形,求出该角,注意角的范围,判断所求角是此角还是它的补角.[对点训练]1.(2019·浙江金华十校高考模拟)如图,AB=BE=BC=2AD=2,且AB⊥BE,∠DAB=60°,AD∥BC,BE⊥AD,(1)求证:平面ADE⊥平面BDE;(2)求直线AD与平面DCE所成角的正弦值.解:(1)证明:因为AB=2AD,∠DAB=60°,所以AD⊥DB,又BE⊥AD,且BD∩BE=B,所以AD⊥平面BDE,又AD⊂平面ADE,所以平面ADE⊥平面BDE.(2)因为BE⊥AD,AB⊥BE,所以BE⊥平面ABCD,所以点E到平面ABCD的距离就是线段BE的长为2,设AD与平面DCE所成角为θ,点A到平面DCE的距离为d,由VA­DCE=VE­ADC得:13×d×S△CDE=13×|BE|×S△ACD,可解得d=3010,而AD=1,则sinθ=dAD=3010,故直线AD与平面DCE所成角的正弦值为3010.2.(2019·鲁迅中学高考方向性测试)如图,在四面体ABCD中,△ABC是等边三角形,平面ABC⊥平面ABD,点M为棱AB的中点,AB=2,AD=23,∠BAD=90°.(1)求证:AD⊥BC;(2)求异面直线BC与MD所成角的余弦值.解:(1)证明:由平面ABC⊥平面ABD,平面ABC∩平面ABD=AB,AD⊥AB,AD⊂平面ABD,可得AD⊥平面ABC,故AD⊥BC.(2)如图,取棱AC的中点N,连接MN,ND.又因为M为棱AB的中点,故MN∥BC.所以∠DMN(或其补角)为异面直线BC与MD所成的角.在Rt△DAM中,AM=1,故DM=AD2+AM2=13.因为AD⊥平面ABC,故AD⊥AC.在Rt△DAN中,AN=1,故DN=AD2+AN2=13.在等腰三角形DMN中,MN=1,可得cos∠DMN=12MNDM=1326.所以异面直线BC与MD所成角的余弦值为1326.[核心提炼]由平面图形“翻折”为空间图形,要求解(证明)该空间图形中的某些元素所对应的量或对应的位置关系,首先看翻折前后线面位置关系的变化,根据翻折的过程理清翻折前后位置关系中没有变化的量是哪些,发生变化的量是哪些,这些不变的量和变化的量反映了翻折后的空间图形的结构特征,求解问题时要综合考虑翻折前后的图形.空间几何中的“翻折”问题[典型例题](1)如图,已知平面四边形ABCD,AB=BC=3,CD=1,AD=5,∠ADC=90°.沿直线AC将△ACD翻折成△ACD′,直线AC与BD′所成角的余弦的最大值是__________.(2)(2019·台州市一模)如图,在矩形ABCD中,AB=1,BC=2,E为BC的中点,F为线段AD上的一点,且AF=32.现将四边形ABEF沿直线EF翻折,使翻折后的二面角A′­EF­C的余弦值为23.①求证:A′C⊥EF;②求直线A′D与平面ECDF所成角的大小.【解】(1)作BE∥AC,BE=AC,连接D′E,则∠D′BE为所求的角或其补角,作D′N⊥AC于点N,设M为

1 / 45
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功