习题课二提升关键能力(概率部分高频考点一古典概型1.互斥事件与对立事件的概率(1)互斥事件是不可能同时发生的两个事件;对立事件除要求这两个事件不同时发生外,还要求二者必须有一个发生.因此对立事件一定是互斥事件,但互斥事件不一定是对立事件,对立事件是互斥事件的特殊情况.(2)当事件A与B互斥时,P(A+B)=P(A)+P(B),当事件A与B对立时,P(A+B)=P(A)+P(B)=1,即P(A)=1-P(B).(3)求复杂事件的概率通常有两种方法:一是将所求事件转化成彼此互斥的事件的和;二是先求其对立事件的概率,然后再应用公式P(A)=1-P(A)求解.2.古典概型的求法对于古典概型概率的计算,关键是分清基本事件的总数n与事件A包含的基本事件的个数m,有时需用列举法把基本事件一一列举出来,再利用公式P(A)=mn求出事件发生的概率,这是一个形象、直观的好方法,但列举时必须按照某种顺序,以保证不重复、不遗漏.[典例]甲、乙两校各有3名教师报名支教,其中甲校2男1女,乙校1男2女.(1)若从甲校和乙校报名的教师中各任选1名,写出所有可能的结果,并求选出的2名教师性别相同的概率;(2)若从报名的6名教师中任选2名,写出所有可能的结果,并求选出的2名教师来自同一学校的概率.[解]甲校两名男教师分别用A,B表示,女教师用C表示;乙校男教师用D表示,两名女教师分别用E,F表示.(1)从甲校和乙校报名的教师中各任选1名的所有可能的结果为:(A,D),(A,E),(A,F),(B,D),(B,E),(B,F),(C,D),(C,E),(C,F),共9种.从中选出的2名教师性别相同的结果有:(A,D),(B,D),(C,E),(C,F),共4种,所以选出的2名教师性别相同的概率为P=49.(2)从甲校和乙校报名的教师中任选2名的所有可能的结果为:(A,B),(A,C),(A,D),(A,E),(A,F),(B,C),(B,D),(B,E),(B,F),(C,D),(C,E),(C,F),(D,E),(D,F),(E,F),共15种.从中选出的2名教师来自同一学校的结果有:(A,B),(A,C),(B,C),(D,E),(D,F),(E,F),共6种.所以,选出的2名教师来自同一学校的概率为P=615=25.[类题通法]解决与古典概型问题时,把相关的知识转化为事件,列举基本事件,求出基本事件和随机事件的个数,然后利用古典概型的概率计算公式进行计算.[集训冲关]1.某导演先从2个金鸡奖和3个百花奖的5位演员名单中挑选2名演主角,后又从剩下的演员中挑选1名演配角.这位导演挑选出2个金鸡奖演员和1个百花奖演员的概率为()A.13B.110C.25D.310解析:设2个金鸡奖演员编号为1,2,3个百花奖演员编号为3,4,5.从编号为1,2,3,4,5的演员中任选3名有10种挑选方法:(1,2,3),(1,2,4),(1,2,5),(1,3,4),(1,3,5),(1,4,5),(2,3,4),(2,3,5),(2,4,5),(3,4,5),共10种.其中挑选出2名金鸡奖和1名百花奖的有3种:(1,2,3),(1,2,4),(1,2,5),故所求的概率为P=310.答案:D2.随着经济的发展,人们生活水平的提高,中学生的营养与健康问题越来越得到学校与家长的重视.从学生体检评价报告单了解到我校3000名学生的体重发育评价情况,得下表:偏痩正常肥胖女生/人300865y男生/人x885z已知从这批学生中随机抽取1名学生,抽到偏痩男生的概率为0.15.(1)求x的值;(2)若用分层抽样的方法,从这批学生中随机抽取60名,问应在肥胖学生中抽多少名?(3)已知y≥243,z≥243,求肥胖学生中男生不少于女生的概率.解:(1)由题意得,从这批学生中随机抽取1名学生,抽到偏痩男生的概率为0.15,可知x3000=0.15,所以x=450.(2)由题意,可知肥胖学生人数为y+z=500(人).设应在肥胖学生中抽取m人,则m500=603000.所以m=10.即应在肥胖学生中抽10名.(3)由题意,可知y+z=500,且y≥243,z≥243,满足条件的基本事件如下:(243,257),(244,256),…,(257,243),共有15组.设事件A:“肥胖学生中男生不少于女生”,即y≤z,满足条件的(y,z)的基本事件有:(243,257),(244,256),…,(250,250),共有8组,所以P(A)=815.所以肥胖学生中男生不少于女生的概率为815.高频考点二条件概率条件概率的性质(1)非负性:0≤P(B|A)≤1.(2)可加性:如果是两个互斥事件,则P(B∪C|A)=P(B|A)+P(C|A).[典例]口袋中有2个白球和4个红球,现从中随机地不放回连续抽取两次,每次抽取1个,则:(1)第一次取出的是红球的概率是多少?(2)第一次和第二次都取出的是红球的概率是多少?(3)在第一次取出红球的条件下,第二次取出的是红球的概率是多少?[解]记事件A:第一次取出的是红球;事件B:第二次取出的是红球.(1)从中随机地不放回连续抽取两次,每次抽取1个,所有基本事件共6×5个;第一次取出的是红球,第二次是其余5个球中的任一个,符合条件的有4×5个,所以P(A)=4×56×5=23.(2)从中随机地不放回连续抽取两次,每次抽取1个,所有基本事件共6×5个;第一次和第二次都取出的是红球,相当于取两个球,都是红球,符合条件的有4×3个,所以P(AB)=4×36×5=25.(3)利用条件概率的计算公式,可得P(B|A)=P(AB)P(A)=2523=35.[类题通法]条件概率的两个求解策略(1)定义法:计算P(A),P(B),P(AB),利用P(A|B)=P(AB)P(B)或P(B|A)=P(AB)P(A)求解.(2)缩小样本空间法:利用P(B|A)=n(AB)n(A)求解.其中(2)常用于古典概型的概率计算问题.[集训冲关]1.从编号为1,2,…,10的10个大小相同的球中任取4个,已知选出4号球的条件下,选出球的最大号码为6的概率为.解析:令事件A={选出的4个球中含4号球},B={选出的4个球中最大号码为6}.依题意知n(A)=C39=84,n(AB)=C24=6,∴P(B|A)=n(AB)n(A)=684=114.答案:1142.已知男人中有5%患色盲,女人中有0.25%患色盲,从100个男人和100个女人中任选一人.(1)求此人患色盲的概率.(2)如果此人是色盲,求此人是男人的概率.(以上各问结果写成最简分式形式).解:设“任选一人是男人”为事件A,“任选一人是女人”为事件B,“任选一人是色盲”为事件C.(1)此人患色盲的概率P=P(AC)+P(BC)=P(A)P(C|A)+P(B)P(C|B)=100200×5100+100200×0.25100=21800.(2)由(1)得P(AC)=5200,又因为P(C)=21800,所以P(A|C)=P(AC)P(C)=520021800=2021.高频考点三相互独立事件的概率与二项分布(1)若事件A与B相互独立,则事件A与B,A与B,A与B分别相互独立,且有P(AB)=P(A)P(B),P(AB)=P(A)P(B),P(AB)=P(A)P(B).(2)若事件A1,A2,…,An相互独立,则有P(A1A2A3…An)=P(A1)P(A2)…P(An).(3)在n次独立重复试验中,事件A发生的次数为X,在每次试验中事件A发生的概率为p,那么在n次独立重复试验中,事件A恰好发生k次的概率为P(X=k)=Cknpk(1-p)n-k,k=0,1,2,…,n.(4)二项分布满足的条件与二项分布有关的问题关键是二项分布的判定,可从以下几个方面判定:①每次试验中,事件发生的概率是相同的.②各次试验中的事件是相互独立的.③每次试验只有两种结果:事件要么发生,要么不发生.④随机变量是这n次独立重复试验中某事件发生的次数.[典例]某班甲、乙、丙三名同学竞选班委,甲当选的概率为45,乙当选的概率为35,丙当选的概率为710.(1)求恰有一名同学当选的概率;(2)求至多有两人当选的概率.[解]设甲、乙、丙当选的事件分别为A,B,C,则有P(A)=45,P(B)=35,P(C)=710.(1)∵A,B,C相互独立,∴恰有一名同学当选的概率为P(A·B·C)+P(A·B·C)+P(A·B·C)=P(A)·P(B)·P(C)+P(A)·P(B)·P(C)+P(A)·P(B)·P(C)=45×25×310+15×35×310+15×25×710=47250.(2)至多有两人当选的概率为1-P(ABC)=1-P(A)·P(B)·P(C)=1-45×35×710=83125.[类题通法]求相互独立事件同时发生的概率需注意的三个问题(1)“P(AB)=P(A)P(B)”是判断事件是否相互独立的充要条件,也是解答相互独立事件概率问题的唯一工具.(2)涉及“至多”“至少”“恰有”等字眼的概率问题,务必分清事件间的相互关系.(3)公式“P(A+B)=1-P(AB)”常应用于求相互独立事件至少有一个发生的概率.[集训冲关]1.投掷一枚均匀硬币和一枚均匀骰子各一次,记“硬币正面向上”为事件A,“骰子向上的点数是3”为事件B,则事件A,B中至少有一件发生的概率是.解析:用间接法考虑,事件A,B一个都不发生的概率为P(AB)=P(A)·P(B)=12×56=512,则事件A,B中至少有一件发生的概率P=1-P(AB)=712.答案:7122.在一次抗洪抢险中,准备用射击的办法引爆从上游漂流而下的一个巨大汽油罐,已知只有5发子弹,第一次命中只能使汽油流出,第二次命中才能引爆,每次射击是相互独立的,且命中的概率都是23.(1)求油罐被引爆的概率;(2)如果引爆或子弹打光则停止射击,设射击次数为ξ,求ξ不小于4的概率.解:(1)油罐引爆的对立事件为油罐没有引爆,没有引爆的可能情况是:射击5次只击中一次或一次也没有击中,故该事件的概率为:P=C15·23·134+135,所以所求的概率为1-P=1-C15·23·134+135=232243.(2)当ξ=4时记事件A,则P(A)=C13·23·132·23=427.当ξ=5时,意味着前4次射击只击中一次或一次也未击中,记为事件B.则P(B)=C14·23·133+134=19,所以所求概率为:P(A∪B)=P(A)+P(B)=427+19=727.高频考点四离散型随机变量的期望与方差(1)求离散型随机变量的期望与方差,一般先列出分布列,再按期望与方差的计算公式计算.(2)要熟记特殊分布的期望与方差公式(如两点分布、二项分布、超几何分布).(3)注意期望与方差的性质.(4)实际应用问题,要注意分析实际问题用哪种数学模型来表达.[典例](全国乙卷)某公司计划购买2台机器,该种机器使用三年后即被淘汰.机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元.在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得下面柱状图:以这100台机器更换的易损零件数的频率代替1台机器更换的易损零件数发生的概率,记X表示2台机器三年内共需更换的易损零件数,n表示购买2台机器的同时购买的易损零件数.(1)求X的分布列;(2)若要求P(X≤n)≥0.5,确定n的最小值;(3)以购买易损零件所需费用的期望值为决策依据,在n=19与n=20之中选其一,应选用哪个?[解](1)由柱状图及以频率代替概率可得,一台机器在三年内需更换的易损零件数为8,9,10,11的概率分别为0.2,0.4,0.2,0.2.从而P(X=16)=0.2×0.2=0.04;P(X=17)=2×0.2×0.4=0.16;P(X=18)=2×0.2×0