(新课标)2020版高考数学二轮复习 专题七 选考部分 第1讲 坐标系与参数方程课件 理 新人教A版

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

数学第二部分高考热点分层突破专题七选考部分第1讲坐标系与参数方程01做高考真题明命题趋向02研考点考向破重点难点03练典型习题提数学素养[做真题]1.(2019·高考全国卷Ⅲ)如图,在极坐标系Ox中,A(2,0),B2,π4,C2,3π4,D(2,π),弧AB︵,BC︵,CD︵所在圆的圆心分别是(1,0),1,π2,(1,π),曲线M1是弧AB︵,曲线M2是弧BC︵,曲线M3是弧CD︵.(1)分别写出M1,M2,M3的极坐标方程;(2)曲线M由M1,M2,M3构成,若点P在M上,且|OP|=3,求P的极坐标.解:(1)由题设可得,弧AB︵,BC︵,CD︵所在圆的极坐标方程分别为ρ=2cosθ,ρ=2sinθ,ρ=-2cosθ.所以M1的极坐标方程为ρ=2cosθ0≤θ≤π4,M2的极坐标方程为ρ=2sinθπ4≤θ≤3π4,M3的极坐标方程为ρ=-2cosθ3π4≤θ≤π.(2)设P(ρ,θ),由题设及(1)知:若0≤θ≤π4,则2cosθ=3,解得θ=π6;若π4≤θ≤3π4,则2sinθ=3,解得θ=π3或θ=2π3;若3π4≤θ≤π,则-2cosθ=3,解得θ=5π6.综上,P的极坐标为3,π6或3,π3或3,2π3或3,5π6.2.(2019·高考全国卷Ⅰ)在直角坐标系xOy中,曲线C的参数方程为x=1-t21+t2,y=4t1+t2(t为参数).以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,直线l的极坐标方程为2ρcosθ+3ρsinθ+11=0.(1)求C和l的直角坐标方程;(2)求C上的点到l距离的最小值.解:(1)因为-1<1-t21+t2≤1,且x2+y22=1-t21+t22+4t2(1+t2)2=1,所以C的直角坐标方程为x2+y24=1(x≠-1).l的直角坐标方程为2x+3y+11=0.(2)由(1)可设C的参数方程为x=cosα,y=2sinα(α为参数,-π<α<π).C上的点到l的距离为|2cosα+23sinα+11|7=4cosα-π3+117.当α=-2π3时,4cosα-π3+11取得最小值7,故C上的点到l距离的最小值为7.[明考情]1.坐标系与参数方程是高考的选考内容之一,高考考查的重点主要有两个方面:一是简单曲线的极坐标方程;二是参数方程、极坐标方程与曲线的综合应用.2.全国卷对此部分内容的考查以解答题形式出现,难度中等,备考此部分内容时应注意转化思想的应用.[典型例题](2019·高考全国卷Ⅱ)在极坐标系中,O为极点,点M(ρ0,θ0)(ρ00)在曲线C:ρ=4sinθ上,直线l过点A(4,0)且与OM垂直,垂足为P.(1)当θ0=π3时,求ρ0及l的极坐标方程;(2)当M在C上运动且P在线段OM上时,求P点轨迹的极坐标方程.极坐标方程及其应用【解】(1)因为M(ρ0,θ0)在C上,当θ0=π3时,ρ0=4sinπ3=23.由已知得|OP|=|OA|cosπ3=2.设Q(ρ,θ)为l上除P的任意一点.连接OQ,在Rt△OPQ中,ρcosθ-π3=|OP|=2.经检验,点P2,π3在曲线ρcosθ-π3=2上.所以,l的极坐标方程为ρcosθ-π3=2.(2)设P(ρ,θ),在Rt△OAP中,|OP|=|OA|cosθ=4cosθ,即ρ=4cosθ.因为P在线段OM上,且AP⊥OM,故θ的取值范围是π4,π2.所以,P点轨迹的极坐标方程为ρ=4cosθ,θ∈π4,π2.(1)极坐标方程与普通方程互化的技巧①巧用极坐标方程两边同乘以ρ或同时平方,将极坐标方程构造成含有ρcosθ,ρsinθ,ρ2的形式,然后利用公式代入化简得到普通方程.②巧借两角和差公式,转化ρsin(θ±α)或ρcos(θ±α)的结构形式,进而利用互化公式得到普通方程.③将直角坐标方程中的x换成ρcosθ,将y换成ρsinθ,即可得到其极坐标方程.(2)求解与极坐标有关问题的主要方法①直接利用极坐标系求解,可与数形结合思想配合使用.②转化为直角坐标系,用直角坐标求解.若结果要求的是极坐标,还应将直角坐标化为极坐标.[对点训练]1.(2019·合肥模拟)在直角坐标系xOy中,直线l1:x=0,圆C:(x-1)2+(y-1-2)2=1,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系.(1)求直线l1和圆C的极坐标方程;(2)若直线l2的极坐标方程为θ=π4(ρ∈R),设l1,l2与圆C的公共点分别为A,B,求△OAB的面积.解:(1)因为x=ρcosθ,y=ρsinθ,所以直线l1的极坐标方程式为ρcosθ=0,即θ=π2(ρ∈R),圆C的极坐标方程为ρ2-2ρcosθ-2(1+2)ρsinθ+3+22=0.(2)设A(π2,ρ1)、B(π4,ρ2),将θ=π2代入ρ2-2ρcosθ-2(1+2)ρsinθ+3+22=0,得ρ2-2(1+2)ρ+3+22=0,解得ρ1=1+2.将θ=π4代入ρ2-2ρcosθ-2(1+2)ρsinθ+3+22=0,得ρ2-2(1+2)ρ+3+22=0,解得ρ2=1+2.故△OAB的面积为12×(1+2)2×sinπ4=1+324.2.(2018·高考全国卷Ⅰ)在直角坐标系xOy中,曲线C1的方程为y=k|x|+2.以坐标原点为极点,x轴正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ2+2ρcosθ-3=0.(1)求C2的直角坐标方程;(2)若C1与C2有且仅有三个公共点,求C1的方程.解:(1)由x=ρcosθ,y=ρsinθ得C2的直角坐标方程为(x+1)2+y2=4.(2)由(1)知C2是圆心为A(-1,0),半径为2的圆.由题设知,C1是过点B(0,2)且关于y轴对称的两条射线.记y轴右边的射线为l1,y轴左边的射线为l2.由于B在圆C2的外面,故C1与C2有且仅有三个公共点等价于l1与C2只有一个公共点且l2与C2有两个公共点,或l2与C2只有一个公共点且l1与C2有两个公共点.当l1与C2只有一个公共点时,A到l1所在直线的距离为2,所以|-k+2|k2+1=2,故k=-43或k=0.经检验,当k=0时,l1与C2没有公共点;当k=-43时,l1与C2只有一个公共点,l2与C2有两个公共点.当l2与C2只有一个公共点时,A到l2所在直线的距离为2,所以|k+2|k2+1=2,故k=0或k=43.经检验,当k=0时,l1与C2没有公共点;当k=43时,l2与C2没有公共点.综上,所求C1的方程为y=-43|x|+2.[典型例题](2018·高考全国卷Ⅱ)在直角坐标系xOy中,曲线C的参数方程为x=2cosθ,y=4sinθ(θ为参数),直线l的参数方程为x=1+tcosα,y=2+tsinα(t为参数).(1)求C和l的直角坐标方程;(2)若曲线C截直线l所得线段的中点坐标为(1,2),求l的斜率.参数方程及其应用【解】(1)曲线C的直角坐标方程为x24+y216=1.当cosα≠0时,l的直角坐标方程为y=tanα·x+2-tanα,当cosα=0时,l的直角坐标方程为x=1.(2)将l的参数方程代入C的直角坐标方程,整理得关于t的方程(1+3cos2α)t2+4(2cosα+sinα)t-8=0.①因为曲线C截直线l所得线段的中点(1,2)在C内,所以①有两个解,设为t1,t2,则t1+t2=0.又由①得t1+t2=-4(2cosα+sinα)1+3cos2α,故2cosα+sinα=0,于是直线l的斜率k=tanα=-2.(1)有关参数方程问题的2个关键点①参数方程化为普通方程的关键是消参数,要根据参数的特点进行转化.②利用参数方程解决问题,关键是选准参数,理解参数的几何意义.(2)利用直线的参数方程中参数的几何意义求解问题经过点P(x0,y0),倾斜角为α的直线l的参数方程为x=x0+tcosα,y=y0+tsinα(t为参数).若A,B为直线l上两点,其对应的参数分别为t1,t2,线段AB的中点为M,点M所对应的参数为t0,则以下结论在解题中经常用到:①t0=t1+t22.②|PM|=|t0|=t1+t22.③|AB|=|t2-t1|.④|PA|·|PB|=|t1·t2|.[对点训练]1.已知曲线C:x24+y29=1,直线l:x=2+t,y=2-2t(t为参数).(1)写出曲线C的参数方程,直线l的普通方程;(2)过曲线C上任意一点P作与l夹角为30°的直线,交l于点A,求|PA|的最大值与最小值.解:(1)曲线C的参数方程为x=2cosθy=3sinθ(θ为参数).直线l的普通方程为2x+y-6=0.(2)曲线C上任意一点P(2cosθ,3sinθ)到l的距离为d=55|4cosθ+3sinθ-6|.则|PA|=dsin30°=255|5sin(θ+α)-6|,其中α为锐角,且tanα=43.当sin(θ+α)=-1时,|PA|取得最大值,最大值为2255.当sin(θ+α)=1时,|PA|取得最小值,最小值为255.2.在直角坐标系xOy中,曲线C的参数方程为x=4cosθy=2sinθ(θ为参数),直线l的参数方程为x=t+3,y=2t-23(t为参数),直线l与曲线C交于A,B两点.(1)求|AB|的值;(2)若F为曲线C的左焦点,求FA→·FB→的值.解:(1)由x=4cosθy=2sinθ(θ为参数),消去参数θ得x216+y24=1.由x=t+3,y=2t-23消去参数t得y=2x-43.将y=2x-43代入x2+4y2=16中,得17x2-643x+176=0.设A(x1,y1),B(x2,y2),则x1+x2=64317,x1x2=17617.所以|AB|=1+22|x1-x2|=517×(643)2-4×17×176=4017,所以|AB|的值为4017.(2)由(1)得,F(-23,0),则FA→·FB→=(x1+23,y1)·(x2+23,y2)=(x1+23)(x2+23)+(2x1-43)(2x2-43)=x1x2+23(x1+x2)+12+4[x1x2-23(x1+x2)+12]=5x1x2-63(x1+x2)+60=5×17617-63×64317+60=44,所以FA→·FB→的值为44.[典型例题](2019·福建省质量检查)在平面直角坐标系xOy中,直线l的参数方程为x=1+35t,y=1+45t(t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρ2=21+sin2θ,点P的极坐标为(2,π4).(1)求C的直角坐标方程和P的直角坐标;(2)(一题多解)设l与C交于A,B两点,线段AB的中点为M,求|PM|.极坐标方程与参数方程的综合应用【解】(1)由ρ2=21+sin2θ得ρ2+ρ2sin2θ=2①,将ρ2=x2+y2,y=ρsinθ代入①并整理得,曲线C的直角坐标方程为x22+y2=1.设点P的直角坐标为(x,y),因为点P的极坐标为(2,π4),所以x=ρcosθ=2cosπ4=1,y=ρsinθ=2sinπ4=1.所以点P的直角坐标为(1,1).(2)法一:将x=1+35t,y=1+45t代入x22+y2=1,并整理得41t2+110t+25=0,Δ=1102-4×41×25=80000,故可设方程的两根分别为t1,t2,则t1,t2为A,B对应的参数,且t1+t2=-11041.依题意,点M对应的参数为t1+t22,所以|PM|=|t1+t22|=5541.法二:设A(x1,y1),B(x2,y2),M(x0,y0),则x0=x1+x22,y0=y1+y2

1 / 40
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功