(新课标)2020版高考数学二轮复习 专题八 数学文化及数学思想 第1讲 数学文化课件 理 新人教A

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

数学第二部分高考热点分层突破专题八数学文化及数学思想第1讲数学文化01研考点考向破重点难点02练典型习题提数学素养[典型例题]中国传统文化中很多内容体现了数学的“对称美”.如图所示的太极图是由黑白两个鱼形纹组成的圆形图案,充分体现了相互转化、对称统一的形式美、和谐美.定义:图象能够将圆O的周长和面积同时等分成两部分的函数称为圆O的一个“太极函数”,给出下列命题:函数中的数学文化题①对于任意一个圆O,其“太极函数”有无数个;②函数f(x)=ln(x2+x2+1)可以是某个圆的“太极函数”;③正弦函数y=sinx可以同时是无数个圆的“太极函数”;④函数y=f(x)是“太极函数”的充要条件为函数y=f(x)的图象是中心对称图形.其中正确的命题为()A.①③B.①③④C.②③D.①④【解析】过圆心的直线都可以将圆的周长和面积等分成两部分,故对于任意一个圆O,其“太极函数”有无数个,故①正确;函数f(x)=ln(x2+x2+1)的图象如图1所示,故其不可能为圆的“太极函数”,故②错误;将圆的圆心放在正弦函数y=sinx图象的对称中心上,则正弦函数y=sinx是该圆的“太极函数”,从而正弦函数y=sinx可以同时是无数个圆的“太极函数”,故③正确;函数y=f(x)的图象是中心对称图形,则y=f(x)是“太极函数”,但函数y=f(x)是“太极函数”时,图象不一定是中心对称图形,如图2所示,故④错误.故选A.【答案】A中华太极图,悠悠千古昭著于世,像朝日那样辉煌宏丽,又像明月那样清亮壮美.它是我们华夏先祖的智慧结晶,它是中国传统文化的骄傲象征,它更是中华民族献给人类文明的无价之宝.试题通过太极图展示了数学文化的民族性与世界性.[对点训练](2019·福建泉州两校联考)我国古代数学著作《九章算术》中有如下问题:“今有人持金出五关,前关二而税一,次关三而税一,次关四而税一,次关五而税一,次关六而税一,并五关所税,适重一斤.”其意思为:“今有人持金出五关,第1关所收税金为持金的12,第2关所收税金为剩余持金的13,第3关所收税金为剩余持金的14,第4关所收税金为剩余持金的15,第5关所收税金为剩余持金的16,5关所收税金之和恰好重1斤.”则在此问题中,第5关所收税金为()A.136斤B.130斤C.125斤D.120斤解析:选C.设此人持金x斤,根据题意知第1关所收税金为x2斤;第2关所收税金为x6斤;第3关所收税金为x12斤;第4关所收税金为x20斤;第5关所收税金为x30斤.易知x2+x6+x12+x20+x30=1,解得x=65.则第5关所收税金为125斤.故选C.[典型例题](1)(2019·湖南长沙雅礼中学模拟)我国古代数学著作《九章算术》有如下问题:“今有金箠,长五尺,斩本一尺,重四斤,斩末一尺,重二斤,问次一尺各重几何?”意思是:“现有一根金箠,长5尺,一头粗,一头细,在粗的一端截下1尺,重4斤,在细的一端截下1尺,重2斤,问依次每一尺各重多少斤?”设该金箠由粗到细是均匀变化的,其重量为M,现将该金箠截成长度相等的10段,记第i段的重量为ai(i=1,2,…,10),且a1a2…a10,若48ai=5M,则i=()A.4B.5C.6D.7数列中的数学文化题(2)(2019·河北辛集中学期中)中国古代数学著作《张丘建算经》中记载:“今有马行转迟,次日减半,疾七日,行七百里.”其意思是:“现有一匹马行走的速度逐渐变慢,每天走的里数是前一天的一半,连续行走7天,共走了700里.”若该匹马按此规律继续行走7天,则它这14天内所走的总路程为()A.17532里B.1050里C.2257532里D.2100里【解析】(1)由题意知,由细到粗每段的重量组成一个等差数列,记为{an},设公差为d,则有a1+a2=2,a9+a10=4⇒2a1+d=2,2a1+17d=4⇒a1=1516,d=18.所以该金箠的总重量M=10×1516+10×92×18=15.因为48ai=5M,所以有48[1516+(i-1)×18]=75,解得i=6,故选C.(2)由题意可知,马每天行走的路程组成一个等比数列,设该数列为{an},则该匹马首日行走的路程为a1,公比为12,则有a1[1-(12)7]1-12=700,则a1=350×128127,则a1[1-(12)14]1-12=2257532(里).故选C.【答案】(1)C(2)C(1)数列中的数学文化题一般以我国古代数学名著中的等差数列和等比数列问题为背景,考查等差数列和等比数列的概念、通项公式和前n项和公式.(2)解决这类问题的关键是将古代实际问题转化为现代数学问题,掌握等比(差)数列的概念、通项公式和前n项和公式.[对点训练]1.《九章算术》是我国古代的数学名著,书中《均输章》有如下问题:“今有五人分五钱,令上二人所得与下三人等,问各得几何.”其意思为:已知甲、乙、丙、丁、戊五人分5钱,甲、乙两人所得与丙、丁、戊三人所得相同,且甲、乙、丙、丁、戊每人所得依次成等差数列,问五人各得多少钱?(“钱”是古代的一种重量单位)在这个问题中,丙所得为()A.76钱B.56钱C.23钱D.1钱解析:选D.因为甲、乙、丙、丁、戊每人所得依次成等差数列,设每人所得依次为a-2d、a-d、a、a+d、a+2d,则a-2d+a-d+a+a+d+a+2d=5,解得a=1,即丙所得为1钱,故选D.2.(一题多解)《九章算术》中有一题:今有牛、马、羊食人苗.苗主责之粟五斗.羊主曰:“我羊食半马.”马主曰:“我马食半牛.”今欲衰偿之,问各出几何.其意思是:今有牛、马、羊吃了别人的禾苗,禾苗主人要求赔偿五斗粟.羊主人说:“我羊所吃的禾苗只有马的一半.”马主人说:“我马所吃的禾苗只有牛的一半.”若按此比例偿还,牛、马、羊的主人各应赔偿多少粟?在这个问题中,牛主人比羊主人多赔偿()A.507斗粟B.107斗粟C.157斗粟D.207斗粟解:选C.法一:设羊、马、牛主人赔偿的粟的斗数分别为a1,a2,a3,则这3个数依次成等比数列,公比q=2,所以a1+2a1+4a1=5,解得a1=57,故a3=207,a3-a1=207-57=157,故选C.法二:羊、马、牛主人赔偿的比例是1∶2∶4,故牛主人应赔偿5×47=207(斗),羊主人应赔偿5×17=57(斗),故牛主人比羊主人多赔偿了207-57=157(斗),故选C.[典型例题]《数书九章》中给出了“已知三角形三边长求三角形面积的求法”,填补了我国传统数学的一个空白,与著名的海伦公式完全等价,由此可以看出我国古代人具有很高的数学水平,其求法是“以小斜幂并大斜幂减中斜幂,余半之,自乘于上;以小斜幂乘大斜幂,减上,余四约之,为实;一为从隅,开平方得积”.若把这段文字写成公式,即S=14c2a2-c2+a2-b222,现有周长为22+5的△ABC满足sinA∶sinB∶sinC=(2-1)∶5∶(2+1),用上面给出的公式求得△ABC的面积为()A.32B.34C.52D.54三角函数中的数学文化题【解析】由正弦定理得sinA∶sinB∶sinC=a∶b∶c=(2-1)∶5∶(2+1),可设三角形的三边分别为a=(2-1)x,b=5x,c=(2+1)x,由题意得(2-1)x+5x+(2+1)x=(22+5)x=22+5,则x=1,故由三角形的面积公式可得△ABC的面积S=14(2+1)2(2-1)2-3+22+3-22-522=34,故选B.【答案】B我国南宋数学家秦九韶发现的“三斜求积术”虽然与海伦公式(S=p(p-a)(p-b)(p-c),其中p=12(a+b+c))在形式上不一样,但两者完全等价,它填补了我国传统数学的一项空白,从中可以看出我国古代已经具有很高的数学水平,人教A版《必修5》教材对此有专门介绍.本题取材于教材中出现的“三斜求积”公式,考查了运算求解能力,同时也传播了中华优秀传统文化.[对点训练](2019·济南市学习质量评估)我国《物权法》规定:建造建筑物,不得违反国家有关工程建设标准,妨碍相邻建筑物的通风、采光和日照.已知某小区的住宅楼的底部均在同一水平面上,且楼高均为45m,依据规定,该小区内住宅楼楼间距应不小于52m.若该小区内某居民在距离楼底27m高处的某阳台观测点,测得该小区内正对面住宅楼楼顶的仰角与楼底的俯角之和为45°,则该小区的住宅楼楼间距实际为________m.解析:设两住宅楼楼间距实际为xm.如图,根据题意可得,tan∠DCA=27x,tan∠DCB=45-27x=18x,又∠DCA+∠DCB=45°,所以tan(∠DCA+∠DCB)=27x+18x1-27x·18x=1,整理得x2-45x-27×18=0,解得x=54或x=-9(舍去).所以该小区住宅楼楼间距实际为54m.答案:54[典型例题](1)(2019·高考浙江卷)祖暅是我国南北朝时代的伟大科学家,他提出的“幂势既同,则积不容异”称为祖暅原理,利用该原理可以得到柱体的体积公式V柱体=Sh,其中S是柱体的底面积,h是柱体的高.若某柱体的三视图如图所示(单位:cm),则该柱体的体积(单位:cm3)是()A.158B.162C.182D.324立体几何中的数学文化题(2)(2018·郑州第二次质量预测)我国古代数学专著《九章算术》对立体几何有深入的研究,从其中的一些数学用语可见,譬如“鳖臑”意指四个面都是直角三角形的三棱锥.某“鳖臑”的三视图(图中网格纸上每个小正方形的边长为1)如图所示,已知该几何体的高为22,则该几何体外接球的表面积为________.【解析】(1)如图,该柱体是一个五棱柱,棱柱的高为6,底面可以看作由两个直角梯形组合而成,其中一个上底为4,下底为6,高为3,另一个的上底为2,下底为6,高为3.则底面面积S=2+62×3+4+62×3=27.因此,该柱体的体积V=27×6=162.故选B.(2)由该几何体的三视图还原其直观图,并放入长方体中,如图中的三棱锥A­BCD所示,其中AB=22,BC=CD=2,易知长方体的外接球即三棱锥A­BCD的外接球,设外接球的直径为2R,所以4R2=(22)2+(2)2+(2)2=8+2+2=12,则R2=3,因此外接球的表面积S=4πR2=12π.【答案】(1)B(2)12π立体几何中的数学文化题一般以我国古代发现的球的体积公式、圆柱的体积公式、圆锥的体积公式、圆台的体积公式和“牟合方盖”“阳马”“鳖臑”“堑堵”“刍薨”等中国古代几何名词为背景考查空间几何体的三视图、几何体的体积与表面积等.[对点训练]1.《九章算术》中有这样一个问题:“今有圆堢壔,周四丈八尺,高一丈一尺.问积几何?术曰:周自相乘,以高乘之,十二而一.”这里所说的圆堢壔就是圆柱体,它的体积为“周自相乘,以高乘之,十二而一”,意思是圆柱体的体积为V=112×底面圆的周长的平方×高,由此可推得圆周率π的取值为()A.3B.3.1C.3.14D.3.2解析:选A.设圆柱体的底面半径为r,高为h,由圆柱的体积公式得体积为V=πr2h.由题意知V=112×(2πr)2×h,所以πr2h=112×(2πr)2×h,解得π=3.故选A.2.我国古代数学名著《数书九章》中有“天池盆测雨”题,与题中描绘的器具形状一样(大小不同)的器具的三视图如图所示(单位:寸).若在某地下雨天时利用该器具接的雨水的深度为6寸,则这一天该地的平均降雨量约为(注:平均降雨量等于器具中积水的体积除以器具口的面积.参考公式:圆台的体积V=13πh(R2+r2+R·r),其中R,r分别表示上、下底面的半径,h为高)()A.2寸B.3寸C.4寸D.5寸解析:选A.由三视图可知,该器具的上底面半径为12寸,下底面半径为6寸,高为12寸.因为所接雨水的深度为6寸,所以水面半径为12×(12+6)=9(寸),则盆中水的体积为13π×6×(62+92+6×9)=342π(立方寸),所以这一天该地的平均降雨量约为342ππ×1

1 / 47
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功