(同步精品课堂)2019-2020学年高中数学 第一章 常用逻辑用语 1.2 充分条件与必要条件课件

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

第一章常用逻辑用语1.2充分条件与必要条件学习目标:1.结合具体实例,理解充分条件、必要条件、充要条件的意义.(重点、难点)2.会求(判断)某些问题成立的充分条件、必要条件、充要条件.(重点)3.能够利用命题之间的关系判定充要关系或进行充要条件的证明.(难点)[自主预习·探新知]1.充分条件与必要条件命题真假“若p,则q”是真命题“若p,则q”是假命题推出关系pqpq条件关系p是q的条件q是p的条件p不是q的条件q不是p的条件⇒充分必要充分必要⇒/思考1:(1)p是q的充分条件与q是p的必要条件所表示的推出关系是否相同?(2)以下五种表述形式:①p⇒q;②p是q的充分条件;③q的充分条件是p;④q是p的必要条件;⑤p的必要条件是q.这五种表述形式等价吗?[提示](1)相同,都是p⇒q(2)等价2.充要条件(1)一般地,如果既有p⇒q,又有q⇒p,就记作p⇔q.此时,我们说,p是q的条件,简称条件.概括地说,如果p⇔q,那么p与q条件.(2)若p⇒q,但q⇒/p,则称p是q的充分不必要条件.(3)若q⇒p,但p⇒/q,则称p是q的必要不充分条件.(4)若p⇒/q,且q⇒/p,则称p是q的既不充分也不必要条件.充分必要充要互为充要思考2:(1)若p是q的充要条件,则命题p和q是两个相互等价的命题,这种说法对吗?(2)“p是q的充要条件”与“p的充要条件是q”的区别在哪里?[提示](1)正确.若p是q的充要条件,则p⇔q,即p等价于q.(2)①p是q的充要条件说明p是条件,q是结论.②p的充要条件是q说明q是条件,p是结论.[基础自测]1.思考辨析(1)q是p的必要条件时,p是q的充分条件.()(2)q不是p的必要条件时,“p⇒/q”成立.()(3)若q是p的必要条件,则q成立,p也成立.()[答案](1)√(2)√(3)×2.“x2”是“x2-3x+20”成立的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件A[由x2-3x+20得x2或x1,故选A.]3.下列各题中,p是q的充要条件的是________(填序号).(1)p:b=0,q:函数f(x)=ax2+bx+c是偶函数;(2)p:x0,y0,q:xy0;(3)p:ab,q:a+cb+C.(1)(3)[在(1)(3)中,p⇔q,所以(1)(3)中p是q的充要条件,在(2)中,q⇒p,所以(2)中p不是q的充要条件.][合作探究·攻重难]充分条件、必要条件、充要条件的判断例1指出下列各题中,p是q的什么条件(在“充分不必要条件”“必要不充分条件”“充分必要条件”“既不充分也不必要条件”中选出一种作答).(1)在△ABC中,p:∠A∠B,q:BCAC;(2)对于实数x,y,p:x+y≠8,q:x≠2或y≠6;(3)p:(a-2)(a-3)=0,q:a=3;(4)p:a<b,q:ab<1.[思路探究]判断p⇒q与q⇒p是否成立,当p、q是否定形式,可判断﹁q是﹁p的什么条件.[解](1)在△ABC中,显然有∠A∠B⇔BCAC,所以p是q的充分必要条件.(2)因为x=2且y=6⇒x+y=8,即﹁q⇒﹁p,但﹁p⇒﹁q,所以p是q的充分不必要条件.(3)由(a-2)(a-3)=0可以推出a=2或a=3,不一定有a=3;由a=3可以得出(a-2)(a-3)=0.因此,p是q的必要不充分条件.(4)由于a<b,当b<0时,ab>1;当b>0时,ab<1,故若a<b,不一定有ab<1;当a>0,b>0,ab<1时,可以推出a<b;当a<0,b<0,ab<1时,可以推出a>b.因此p是q的既不充分也不必要条件.[规律方法]充分条件与必要条件的判断方法(1)定义法(2)等价法:将命题转化为另一个等价的又便于判断真假的命题.(3)逆否法:这是等价法的一种特殊情况.若﹁p⇒﹁q,则p是q的必要条件,q是p的充分条件;若﹁p⇒﹁q,且﹁q⇒/﹁p,则p是q的必要不充分条件;若﹁p⇔﹁q,则p与q互为充要条件;若﹁p⇒/﹁q,且﹁q⇒/﹁p,则p是q的既不充分也不必要条件.[跟踪训练]1.(1)设a,b是实数,则“ab”是“a2b2”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件D[令a=1,b=-1,满足ab,但不满足a2b2,即“ab”不能推出“a2b2”;再令a=-1,b=0,满足a2b2,但不满足ab,即“a2b2”不能推出“ab”,所以“ab”是“a2b2”的既不充分也不必要条件.](2)对于二次函数f(x)=ax2+bx+c(a≠0),下列结论正确的是()①Δ=b2-4ac≥0是函数f(x)有零点的充要条件;②Δ=b2-4ac=0是函数f(x)有零点的充分条件;③Δ=b2-4ac0是函数f(x)有零点的必要条件;④Δ=b2-4ac0是函数f(x)没有零点的充要条件.A.①④B.①②③C.①②③④D.①②④D[①Δ=b2-4ac≥0⇔方程ax2+bx+c=0(a≠0)有实根⇔f(x)=ax2+bx+c(a≠0)有零点,故①正确.②若Δ=b2-4ac=0,则方程ax2+bx+c=0(a≠0)有实根,因此函数f(x)=ax2+bx+c(a≠0)有零点,故②正确.③函数f(x)=ax2+bx+c(a≠0)有零点时,方程ax2+bx+c=0(a≠0)有实根,未必有Δ=b2-4ac0,也可能有Δ=0,故③错误.④Δ=b2-4ac0⇔方程ax2+bx+c=0(a≠0)无实根⇔函数f(x)=ax2+bx+c(a≠0)无零点,故④正确.]充要条件的探求与证明例2、(1)“x2-4x0”的一个充分不必要条件为()A.0x4B.0x2C.x0D.x4(2)已知x,y都是非零实数,且xy,求证:1x1y的充要条件是xy0.[思路探究](1)先解不等式x2-4x0得到充要条件,则充分不必要条件应是不等式x2-4x0的解集的子集.(2)充要条件的证明可用其定义,即条件⇒结论且结论⇒条件.如果每一步的推出都是等价的(⇔),也可以把两个方面的证明合并在一起,用“⇔”写出证明.[解析](1)由x2-4x0得0x4,则充分不必要条件是集合{x|0x4}的子集,故选B.[答案]B(2)法一:充分性:由xy0及xy,得xxyyxy,即1x1y.必要性:由1x1y,得1x-1y0,即y-xxy0.因为xy,所以y-x0,所以xy0.所以1x1y的充要条件是xy0.法二:1x1y⇔1x-1y0⇔y-xxy0.由条件xy⇔y-x0,故由y-xxy0⇔xy0.所以1x1y⇔xy0,即1x1y的充要条件是xy0.[规律方法]1.探求充要条件一般有两种方法:(1)探求A成立的充要条件时,先将A视为条件,并由A推导结论(设为B),再证明B是A的充分条件,这样就能说明A成立的充要条件是B,即从充分性和必要性两方面说明.(2)将原命题进行等价变形或转换,直至获得其成立的充要条件,探求的过程同时也是证明的过程,因为探求过程每一步都是等价的,所以不需要将充分性和必要性分开来说明.2.充要条件的证明(1)证明p是q的充要条件,既要证明命题“p⇒q”为真,又要证明“q⇒p”为真,前者证明的是充分性,后者证明的是必要性.(2)证明充要条件,即说明原命题和逆命题都成立,要注意“p是q的充要条件”与“p的充要条件是q”这两种说法的差异,分清哪个是条件,哪个是结论.[跟踪训练]2.(1)不等式x(x-2)0成立的一个必要不充分条件是()A.x∈(0,2)B.x∈[-1,+∞)C.x∈(0,1)D.x∈(1,3)B[由x(x-2)0得0x2,因为(0,2)[-1,+∞),所以“x∈[-1,+∞)”是“不等式x(x-2)0成立”的一个必要不充分条件.](2)求证:关于x的方程ax2+bx+c=0有一个根是1的充要条件是a+b+c=0.[证明]假设p:方程ax2+bx+c=0有一个根是1,q:a+b+c=0.①证明p⇒q,即证明必要性.∵x=1是方程ax2+bx+c=0的根,∴a·12+b·1+c=0,即a+b+c=0.②证明q⇒p,即证明充分性.由a+b+c=0,得c=-a-b.∵ax2+bx+c=0,∴ax2+bx-a-b=0,即a(x2-1)+b(x-1)=0.故(x-1)(ax+a+b)=0.∴x=1是方程的一个根.故方程ax2+bx+c=0有一个根是1的充要条件是a+b+c=0.充分条件、必要条件、充要条件的应用[探究问题]1.记集合A={x|p(x)},B={x|q(x)},若p是q的充分不必要条件,则集合A、B的关系是什么?若p是q的必要不充分条件呢?提示:若p是q的充分不必要条件,则AB,若p是q的必要不充分条件,BA.2.记集合M={x|p(x)},N={x|q(x)},若M⊆N,则p是q的什么条件?若N⊆M,M=N呢?提示:若M⊆N,则p是q的充分条件,若N⊆M,则p是q的必要条件,若M=N,则p是q的充要条件.例3、已知p:x2-8x-20≤0,q:x2-2x+1-m2≤0(m0),且p是q的充分不必要条件,则实数m的取值范围为________.[思路探究]p是q的充分不必要条件→p代表的集合是q代表的集合的真子集→列不等式组求解[解析]由x2-8x-20≤0,得-2≤x≤10,由x2-2x+1-m2≤0(m0),得1-m≤x≤1+m(m0).因为p是q的充分不必要条件,所以p⇒q且q⇒/p.即{x|-2≤x≤10}是{x|1-m≤x≤1+m,m0}的真子集,所以m0,1-m-2,1+m≥10或1-m≤-2,m0,1+m10,解得m≥9.所以实数m的取值范围为{m|m≥9}.[答案]{m|m≥9}(或[9,+∞))母题探究:1.本例中“p是q的充分不必要条件”改为“p是q的必要不充分条件”,其他条件不变,试求m的取值范围.[解]由x2-8x-20≤0得-2≤x≤10,由x2-2x+1-m2≤0(m0)得1-m≤x≤1+m(m0)因为p是q的必要不充分条件,所以q⇒p,且p⇒/q.则{x|1-m≤x≤1+m,m0}{x|-2≤x≤10}所以m01-m≥-21+m≤10,解得0m≤3.即m的取值范围是(0,3].2.若本例题改为:已知P={x|a-4xa+4},Q={x|1x3},“x∈P”是“x∈Q”的必要条件,求实数a的取值范围.[解]因为“x∈P”是x∈Q的必要条件,所以Q⊆P.所以a-4≤1a+4≥3解得-1≤a≤5即a的取值范围是[-1,5].[规律方法]利用充分、必要、充分必要条件的关系求参数范围(1)化简p、q两命题,(2)根据p与q的关系(充分、必要、充要条件)转化为集合间的关系,(3)利用集合间的关系建立不等关系,(4)求解参数范围.[当堂达标·固双基]1.(2019年淄博校级月考)“|x|=|y|”是“x=y”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【答案】B[若x=1,y=-1,则|x|=|y|,但x≠y;若x=y,则|x|=|y|,故选B.]2.(2019年海南模拟)“x2-4x-5=0”是“x=5”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】B[由x2-4x-5=0得x=5或x=-1,则当x=5时,x2-4x-5=0成立,但x2-4x-5=0时,x=5不一定成立,故选B.]3.(2019年滁州期中)下列条件中,是x24的必要不充分条件是()A.-2≤x≤2B.-2x0C.0x≤2D.1x3【答案】A[由x24得-2x2,必要不充分条件的x的范围真包含{x|-2x2},故选A.]4.(2018年烟台期末)若“x<m”是“(x-1)(x-2)>0”的充分不必要条件,则m的取值范围是________.【答案】(-∞,1][由

1 / 41
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功