第三章函数的应用3.2.1几类不同增长的函数模型学习目标:1.理解直线上升、指数爆炸、对数增长的含义.(重点)2.区分指数函数、对数函数以及幂函数增长速度的差异.(易混点)3.会选择适当的函数模型分析和解决一些实际问题.(难点)[自主预习·探新知]三种函数模型的性质y=ax(a1)y=logax(a1)y=xn(n0)在(0,+∞)上的增减性增函数增函数增函数图象的变化趋势随x增大逐渐近似与y轴——平行随x增大逐渐近似与x——轴平行随n值而不同增长速度①y=ax(a1):随着x的增大,y增长速度越来越快,会远远大于y=xn(n0)的增长速度,y=logax(a1)的增长速度越来越慢②存在一个x0,当xx0时,有axx——nlogx增函数增函数增函数y轴x轴越来越快越来越慢axxnlogax[基础自测]1.思考辨析(1)函数y=x2比y=2x增长的速度更快些.()(2)当a1,n0时,在区间(0,+∞)上,对任意的x,总有logaxxnax成立.()(3)函数y=log12x衰减的速度越来越慢.()[答案](1)×(2)×(3)√2.下列函数中随x的增大而增大且速度最快的是()A.y=exB.y=lnxC.y=x2D.y=e-xA[结合指数函数,对数函数及一次函数的图象变化趋势可知A正确.]3.某工厂8年来某种产品总产量C与时间t(年)的函数关系如图321所示.图321以下四种说法:①前三年产量增长的速度越来越快;②前三年产量增长的速度越来越慢;③第三年后这种产品停止生产;④第三年后产量保持不变.其中说法正确的序号是________.②④[结合图象可知②④正确,故填②④.][合作探究·攻重难]例1(1)下列函数中,增长速度最快的是()A.y=2018xB.y=x2018C.y=log2018xD.y=2018x几类函数模型的增长差异(2)下面对函数f(x)=log12x,g(x)=12x与h(x)=x-12在区间(0,+∞)上的递减情况说法正确的是()A.f(x)递减速度越来越慢,g(x)递减速度越来越快,h(x)递减速度越来越慢B.f(x)递减速度越来越快,g(x)递减速度越来越慢,h(x)递减速度越来越快C.f(x)递减速度越来越慢,g(x)递减速度越来越慢,h(x)递减速度越来越慢D.f(x)递减速度越来越快,g(x)递减速度越来越快,h(x)递减速度越来越快(1)A(2)C[(1)指数函数y=ax,在a1时呈爆炸式增长,并且随a值的增大,增长速度越快,应选A.(2)观察函数f(x)=log12x,g(x)=12x与h(x)=x-12在区间(0,+∞)上的图象(如图)可知:函数f(x)的图象在区间(0,1)上递减较快,但递减速度逐渐变慢;在区间(1,+∞)上,递减较慢,且越来越慢,同样,函数g(x)的图象在区间(0,+∞)上,递减较慢,且递减速度越来越慢;函数h(x)的图象在区间(0,1)上递减较快,但递减速度逐渐变慢;在区间(1,+∞)上,递减较慢,且越来越慢.][规律方法]常见的函数模型及增长特点线性函数模型线性函数模型y=kx+bk0的增长特点是直线上升,其增长速度不变指数函数模型指数函数模型y=axa1的增长特点是随着自变量的增大,函数值增大的速度越来越快,即增长速度急剧,形象地称为“指数爆炸”对数函数模型对数函数模型y=logaxa1的增长特点是随着自变量的增大,函数值增大的速度越来越慢,即增长速度平缓幂函数模型幂函数y=xnn0的增长速度介于指数增长和对数增长之间[跟踪训练]1.四个变量y1,y2,y3,y4随变量x变化的数据如表:x151015202530y1226101226401626901y22321024377681.05×1063.36×1071.07×109y32102030405060y424.3225.3225.9076.3226.6446.907关于x呈指数函数变化的变量是________.y2[以爆炸式增长的变量呈指数函数变化.从表格中可以看出,四个变量y1,y2,y3,y4均是从2开始变化,且都是越来越大,但是增长速度不同,其中变量y2的增长速度最快,画出它们的图象(图略),可知变量y2关于x呈指数型函数变化.故填y2.]例1函数f(x)=2x和g(x)=x3的图象如图所示,设两函数的图象交于点A(x1,y1),B(x2,y2),且x1<x2.(1)请指出图322中曲线C1,C2分别对应的函数;图322(2)结合函数图象,判断f(6),g(6),f(2016),g(2016)的大小.指数函数、对数函数与幂函数模型的比较[解](1)C1对应的函数为g(x)=x3,C2对应的函数为f(x)=2x.(2)∵f(1)>g(1),f(2)<g(2),f(9)<g(9),f(10)>g(10),∴1<x1<2,9<x2<10,∴x1<6<x2,2016>x2.从图象上可以看出,当x1<x<x2时,f(x)<g(x),∴f(6)<g(6);当x>x2时,f(x)>g(x),∴f(2016)>g(2016).又g(2016)>g(6),∴f(2016)>g(2016)>g(6)>f(6).[规律方法]由图象判断指数函数、对数函数和幂函数的方法根据图象判断增长型的指数函数、对数函数和幂函数时,通常是观察函数图象上升得快慢,即随着自变量的增大,图象最“陡”的函数是指数函数;图象趋于平缓的函数是对数函数.[跟踪训练]2.函数f(x)=lgx,g(x)=0.3x-1的图象如图323所示.图323(1)试根据函数的增长差异指出曲线C1,C2分别对应的函数;(2)比较两函数的增长差异(以两图象交点为分界点,对f(x),g(x)的大小进行比较).[解](1)C1对应的函数为g(x)=0.3x-1,C2对应的函数为f(x)=lgx.(2)当xx1时,g(x)f(x);当x1xx2时,f(x)g(x);当xx2时,g(x)f(x);当x=x1或x=x2时,f(x)=g(x).[探究问题]1.一次函数模型、指数函数模型、对数函数模型的增长速度各有什么特点?需选择函数模型的实际问题提示:一次函数模型的增长速度不变,是均匀的;指数函数模型的增长速度最快,呈爆炸式;对数函数模型的增长速度先快后慢.2.在选择函数模型时,若随着自变量的变大、函数值增加得速度急剧变化,应选择哪个函数模型?若变化的速度很平缓,应选择哪个函数模型?提示:前者应选择指数函数模型,后者选择对数函数模型.例3(1)某公司为了适应市场需求对产品结构做了重大调整,调整后初期利润增长迅速,后来增长越来越慢,若要建立恰当的函数模型来反映该公司调整后利润y与时间x的关系,可选用()A.一次函数B.二次函数C.指数型函数D.对数型函数(2)某皮鞋厂今年1月份开始投产,并且前4个月的产量分别为1万双,1.2万双,1.3万双,1.37万双.由于产品质量好、款式新颖,前几个月的销售情况良好.为了推销员在推销产品时,接受订单不至于过多或过少,需要估计以后几个月的产量.厂里分析,产量的增加是由于工人生产熟练和理顺了生产流程.厂里也暂时不准备增加设备和工人.假如你是厂长,就月份为x,产量为y给出三种函数模型:y=ax+b,y=ax2+bx+c,y=abx+c,你将利用哪一种模型去估算以后几个月的产量?思路探究:结合函数模型的增长速度选择合适的模型求解.(1)D[结合“直线上升,对数增长,指数爆炸”可知,对数型函数符合题设条件,故选D.](2)由题意知,将产量随时间变化的离散量分别抽象为A(1,1),B(2,1.2),C(3,1.3),D(4,1.37)这4个数据.①设模拟函数为y=ax+b时,将B,C两点的坐标代入函数式,得3a+b=1.3,2a+b=1.2.解得a=0.1,b=1.所以有关系式y=0.1x+1.由此可得结论为:在不增加工人和设备的条件下,产量会每月上升1000双,这是不太可能的.②设模拟函数为y=ax2+bx+c时,将A,B,C三点的坐标代入函数式,得a+b+c=1,4a+2b+c=1.2,9a+3b+c=1.3.解得a=-0.05,b=0.35,c=0.7.所以有关系式y=-0.05x2+0.35x+0.7.结论为:由此法计算4月份的产量为1.3万双,比实际产量少700双,而且由二次函数性质可知,产量自4月份开始将每月下降(图象开口向下,对称轴为x=3.5),不合实际.③设模拟函数为y=abx+c时,将A,B,C三点的坐标代入函数式,得ab+c=1,1ab2+c=1.2,2ab3+c=1.3.3由1),得ab=1-c,代入2)3),得b1-c+c=1.2,b21-c+c=1.3.则c=1.2-b1-b,c=1.3-b21-b2解得b=0.5,c=1.4.则a=1-cb=-0.8.所以有关系式y=-0.8×0.5x+1.4.结论为:当把x=4代入得y=-0.8×0.54+1.4=1.35.比较上述三个模拟函数的优劣,既要考虑到误差最小,又要考虑生产的实际,如:增产的趋势和可能性.经过筛选,以指数函数模拟为最佳,一是误差小,二是由于厂房新建,随着工人技术和管理效益逐渐提高,一段时间内产量会明显上升,但经过一段时间之后,如果不更新设备,产量必然趋于稳定,而指数型函数模型恰好反映了这种趋势.因此选用指数型函数y=-0.8×0.5x+1.4,模拟比较接近客观实际.[规律方法]此类问题求解的关键是首先利用待定系数法求出相关函数模型,也就是借助数据信息,得到相关方程,进而求出待定参数函数模型的选择与数据的拟合是数学建模中最核心的内容,解题的关键在于通过对已知数据的分析,得出重要信息,根据解题积累的经验,从已有的各类型函数中选择模拟,进行数据的拟合[跟踪训练]3.某跨国饮料公司在对全世界所有人均GDP(即人均纯收入)在0.5~8千美元的地区销售该公司A饮料的情况调查时发现:该饮料在人均GDP处于中等的地区销售量最多,然后向两边递减.(1)下列几个模拟函数中:①y=ax2+bx;②y=kx+b;③y=logax+b;④y=ax+b(x表示人均GDP,单位:千美元,y表示年人均A饮料的销售量,单位:L).用哪个模拟函数来描述人均A饮料销售量与地区的人均GDP关系更合适?说明理由;(2)若人均GDP为1千美元时,年人均A饮料的销售量为2L,人均GDP为4千美元时,年人均A饮料的销售量为5L,把(1)中你所选的模拟函数求出来,并求出各个地区中,年人均A饮料的销售量最多是多少?[解](1)用①来模拟比较合适.因为该饮料在人均GDP处于中等的地区销售量最多,然后向两边递减.而②,③,④表示的函数在区间上是单调函数,所以②,③,④都不合适,故用①来模拟比较合适.(2)因为人均GDP为1千美元时,年人均A饮料的销量为2升;人均GDP为4千美元时,年人均A饮料的销量为5升,把x=1,y=2;x=4,y=5代入到y=ax2+bx,得2=a+b,5=16a+4b,解得a=-14,b=94,所以函数解析式为y=-14x2+94x.(x∈[0.5,8])∵y=-14x2+94x=-14x-922+8116,∴当x=92时,年人均A饮料的销售量最多是8116L.[当堂达标·固双基]1.(2019年滁州模拟)如表是函数值y随自变量x变化的一组数据,由此判断它最可能的函数模型()x45678910y15171921232527A.一次函数模型B.二次函数模型C.指数函数模型D.对数函数模型【答案】A[自变量每增加1函数值增加2,函数值的增量是均匀的,故为一次函数模型.故选A.]2.(2019年温州月考)下列函数中,随x的增大,增长速度最快的是()A.y=1B.y=xC.y=3xD