第一章集合与函数概念第二课时分段函数1.2.2函数的表示法学习目标:1.了解分段函数的概念,会求分段函数的函数值,能画出分段函数的图象.(重点,难点)2.能在实际问题中列出分段函数,并能解决有关问题.(重点、难点)3.通过本节内容的学习,使学生了解分段函数的含义,提高学生数学建模、数学运算的能力.(重点)[自主预习·探新知]分段函数如果函数y=f(x),x∈A,根据自变量x在A中不同的取值范围,有着不同的对应关系,则称这样的函数为分段函数.思考:分段函数对于自变量x的不同取值区间对应关系不同,那么分段函数是一个函数还是几个函数?分段函数的定义域和值域分别是什么?[提示]分段函数是一个函数,而不是几个,各段定义域的并集即为分段函数的定义域,各段值域的并集即为分段函数的值域.取值范围对应关系[基础自测]1.思考辨析(1)分段函数由几个函数构成.()(2)函数f(x)=x+1,x≤1,-x+3,x0是分段函数.()(3)函数f(x)=|x|可以用分段函数表示()[答案](1)×(2)×(3)√2.f(x)=|x-1|的图象是()B[∵f(x)=|x-1|=x-1,x≥1,1-x,x1,当x=1时,f(1)=0,可排除A,C.又x=-1时,f(-1)=2,排除D.]3.函数f(x)=x+1,x≤1,-x+3,x1,则f(f(4))=________.0[∵f(4)=-4+3=-1,f(-1)=-1+1=0,∴f(f(4))=f(-1)=0.]4.函数f(x)=2x,0≤x≤1,2,1x2,3,x≥2的值域是()A.RB.[0,2]∪{3}C.[0,+∞)D.[0,3]B[当0≤x≤1时,0≤2x≤2,即0≤f(x)≤2;当1x2时,f(x)=2;当x≥2时,f(x)=3.综上可知f(x)的值域为[0,2]∪{3}.][合作探究·攻重难]例1已知函数f(x)=x+1,x≤-2,x2+2x,-2x2,2x-1,x≥2.(1)求f(-5),f(-3),ff-52的值;(2)若f(a)=3,求实数a的值.分段函数的求值问题[解](1)由-5∈(-∞,-2],-3∈(-2,2),-52∈(-∞,-2],知f(-5)=-5+1=-4,f(-3)=(-3)2+2×(-3)=3-23.∵f-52=-52+1=-32,而-2-322,∴ff-52=f-32=-322+2×-32=94-3=-34.(2)当a≤-2时,a+1=3,即a=2-2,不合题意,舍去.当-2a2时,a2+2a=3,即a2+2a-3=0.∴(a-1)(a+3)=0,解得a=1或a=-3.∵1∈(-2,2),-3(-2,2),∴a=1符合题意.当a≥2时,2a-1=3,即a=2符合题意.综上可得,当f(a)=3时,a=1或a=2.[规律方法]1.分段函数求函数值的方法:(1)确定要求值的自变量属于哪一段区间.(2)代入该段的解析式求值,直到求出值为止.当出现f(f(x0))的形式时,应从内到外依次求值.2.已知函数值求字母取值的步骤:(1)先对字母的取值范围分类讨论.(2)然后代入不同的解析式中.(3)通过解方程求出字母的值.(4)检验所求的值是否在所讨论的区间内.提醒:求某条件下自变量的值时,先假设所求的值在分段函数定义区间的各段上,然后相应求出自变量的值,切记代入检验.[跟踪训练]1.函数f(x)=x-3,x≥10,ffx+5,x10,则f(7)=________.8[∵函数f(x)=x-3,x≥10,ffx+5,x10,∴f(7)=f(f(12))=f(9)=f(f(14))=f(11)=8.]例2如图127所示,已知底角为45°的等腰梯形ABCD,底边BC长为7cm,腰长为22cm,当垂直于底边BC(垂足为F)的直线l从左至右移动(与梯形ABCD有公共点)时,直线l把梯形分成两部分,令BF=x,试写出左边部分的面积y关于x的函数解析式,并画出大致图象.分段函数的解析式思路探究:可按点E所在的位置分E在线段AB,E在线段AD及E在线段CD三类分别求解.图127[解]过点A,D分别作AG⊥BC,DH⊥BC,垂足分别是G,H.因为四边形ABCD是等腰梯形,底角为45°,AB=22cm,所以BG=AG=DH=HC=2cm,又BC=7cm,所以AD=GH=3cm.(1)当点F在BG上,即x∈[0,2]时,y=12x2;(2)当点F在GH上,即x∈(2,5]时,y=x+x-22×2=2x-2;(3)当点F在HC上,即x∈(5,7]时,y=S五边形ABFED=S梯形ABCD-SRt△CEF=12(7+3)×2-12(7-x)2=-12(x-7)2+10.综合(1)(2)(3),得函数的解析式为y=12x2,x∈[0,2],2x-2,x∈2,5],-12x-72+10,x∈5,7].图象如图所示.[规律方法]1.当目标在不同区间有不同的计算表达方式时,往往需要用分段函数模型来表示两变量间的对应关系,而分段函数图象也需要分段画.2.通过本例让学生初步尝试用分段函数解决实际问题的意识,培养学生的建模素养.[跟踪训练]2.某市“招手即停”公共汽车的票价按下列规则制定:(1)5公里以内(含5公里),票价2元;(2)5公里以上,每增加5公里,票价增加1元(不足5公里按照5公里计算).如果某条线路的总里程为20公里,请根据题意,写出票价与里程之间的函数解析式,并画出函数的图象.[解]设票价为y元,里程为x公里,定义域为(0,20].由题意得函数的解析式如下:y=2,0x≤5,3,5x≤10,4,10x≤15,5,15x≤20.函数图象如图所示:[探究问题]1.函数f(x)=|x-2|能用分段函数的形式表示吗?能否作出其图象?分段函数的图象及应用提示:能.f(x)=x-2,x≥2,2-x,x2.函数f(x)的图象如图所示.2.结合探究点1,你能说一下画含有绝对值的函数图象的方法吗?提示:含有绝对值的函数,要作出其图象,首先应根据绝对值的意义去掉绝对值符号,将函数转化为分段函数,然后分段作出函数图象.例3已知函数f(x)=1+|x|-x2(-2x≤2).(1)用分段函数的形式表示f(x);(2)画出f(x)的图象;(3)写出函数f(x)的值域.思路探究:(1)分-2x0和0≤x≤2两种情况讨论,去掉绝对值可把f(x)写成分段函数的形式;(2)利用(1)的结论可画出图象;(3)由(2)中得到的图象,找到图象最高点和最低点的纵坐标,可得值域.[解](1)当0≤x≤2时,f(x)=1+x-x2=1,当-2x0时,f(x)=1+-x-x2=1-x,∴f(x)=1,0≤x≤2,1-x,-2x0.(2)函数f(x)的图象如图所示.(3)由(2)知,f(x)在(-2,2]上的值域为[1,3).[规律方法]分段函数图象的画法作分段函数的图象时,分别作出各段的图象,在作每一段图象时,先不管定义域的限制,作出其图象,再保留定义域内的一段图象即可,作图时要特别注意接点处点的虚实,保证不重不漏.母题探究:1.在本例条件不变的情况下,试讨论直线y=a与函数y=f(x)图象的交点个数.[解]①当a≥3或a1时,y=a与y=f(x)的图象无交点;②当1a3时,y=a与y=f(x)的图象有且只有一个交点;③当a=1时,y=a与y=f(x)的图象有无数个交点.[解]①当a≥3或a1时,y=a与y=f(x)的图象无交点;②当1a3时,y=a与y=f(x)的图象有且只有一个交点;③当a=1时,y=a与y=f(x)的图象有无数个交点.2.把本例条件改为“f(x)=|x|-2”,再求本例的3个问题.[解](1)f(x)=|x|-2=x-2,x≥0,-x-2,x0.(2)函数的图象如图所示.(3)由图可知,f(x)的值域为[-2,+∞).[解](1)f(x)=|x|-2=x-2,x≥0,-x-2,x0.(2)函数的图象如图所示.(3)由图可知,f(x)的值域为[-2,+∞).1.(2018秋•遂宁期末)设函数f(x)=,若f(a)=a,则实数a的值为()A.±1B.-1C.-2或-1D.±1或-2【解答】解:由题意知,f(a)=a;当a≥0时,有a−1=a,解得a=-2,(不满足条件,舍去);当a<0时,有=a,解得a=1(不满足条件,舍去)或a=-1.所以实数a的值是:a=-1.故选:B.21a1[当堂达标·固双基]2.(2018秋•会宁县校级期中)已知f(x)=,则不等式x+(x+2)•f(x+2)≤5的解集是()A.[-2,1]B.(-∞,-2]C.[−2,]D.(−∞,]【解答】解:①当x+2≥0时,即x≥-2,f(x+2)=1由x+(x+2)•f(x+2)≤5可得x+x+2≤5∴x≤即-2≤x≤②当x+2<0即x<-2时,f(x+2)=-1由x+(x+2)•f(x+2)≤5可得x-(x+2)≤5即-2≤5∴x<-2综上,不等式的解集为{x|x≤}故选:D.32321,x≥0−1,x<03232323.设函数f(x)=x2+1,x≤1,2x,x1,则f(f(3))=()A.15B.3C.23D.139D[∵f(3)=23≤1,∴f(f(3))=232+1=139.]4.函数y=f(x)的图象如图128所示,则其解析式为________.图128f(x)=2x,0≤x≤1,2,1x2,3,x≥2[当0≤x≤1时,设f(x)=kx,又过点(1,2),故k=2,∴f(x)=2x;当1x2时,f(x)=2;当x≥2时,f(x)=3.综上f(x)=2x,0≤x≤1,2,1x2,3,x≥2.]5.已知f(x)=x2,-1≤x≤1,1,x1或x-1.(1)画出f(x)的图象;(2)求f(x)的定义域和值域.[解](1)利用描点法,作出f(x)的图象,如图所示.(2)由条件知,函数f(x)的定义域为R.由图象知,当-1≤x≤1时,f(x)=x2的值域为[0,1],当x1或x-1时,f(x)=1,所以f(x)的值域为[0,1].