(京津鲁琼专用)2020版高考物理大二轮复习 专题二 第1讲 功能关系的应用课件

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

物理第1部分专题突破方略专题二动量与能量第1讲功能关系的应用01真题感悟透析考情02热考核心高效突破03课后演练强化提能真题再现1.(2019·高考全国卷Ⅲ)从地面竖直向上抛出一物体,物体在运动过程中除受到重力外,还受到一大小不变、方向始终与运动方向相反的外力作用.距地面高度h在3m以内时,物体上升、下落过程中动能Ek随h的变化如图所示.重力加速度取10m/s2.该物体的质量为()A.2kgB.1.5kgC.1kgD.0.5kg解析:选C.设物体的质量为m,则物体在上升过程中,受到竖直向下的重力mg和竖直向下的恒定外力F,由动能定理结合题图可得-(mg+F)×3m=(36-72)J;物体在下落过程中,受到竖直向下的重力mg和竖直向上的恒定外力F,再由动能定理结合题图可得(mg-F)×3m=(48-24)J,联立解得m=1kg、F=2N,选项C正确,A、B、D均错误.考情分析2.(多选)(2019·高考全国卷Ⅱ)从地面竖直向上抛出一物体,其机械能E总等于动能Ek与重力势能Ep之和.取地面为重力势能零点,该物体的E总和Ep随它离开地面的高度h的变化如图所示.重力加速度取10m/s2.由图中数据可得()A.物体的质量为2kgB.h=0时,物体的速率为20m/sC.h=2m时,物体的动能Ek=40JD.从地面至h=4m,物体的动能减少100J解析:选AD.根据题给图象可知h=4m时物体的重力势能mgh=80J,解得物体质量m=2kg,抛出时物体的动能为Ek=100J,由动能公式Ek=12mv2,可知h=0时物体的速率为v=10m/s,选项A正确,B错误;由功能关系可知fh=|ΔE|=20J,解得物体上升过程中所受空气阻力f=5N,从物体开始抛出至上升到h=2m的过程中,由动能定理有-mgh-fh=Ek-100J,解得Ek=50J,选项C错误;由题给图象可知,物体上升到h=4m时,机械能为80J,重力势能为80J,动能为零,即物体从地面上升到h=4m,物体动能减少100J,选项D正确.考情分析3.(2018·高考全国卷Ⅰ)如图,abc是竖直面内的光滑固定轨道,ab水平,长度为2R;bc是半径为R的四分之一圆弧,与ab相切于b点.一质量为m的小球,始终受到与重力大小相等的水平外力的作用,自a点处从静止开始向右运动.重力加速度大小为g.小球从a点开始运动到其轨迹最高点,机械能的增量为()A.2mgRB.4mgRC.5mgRD.6mgR解析:选C.设小球运动到c点的速度大小为vc,则对小球由a到c的过程,由动能定理有F·3R-mgR=12mv2c,又F=mg,解得vc=2gR,小球离开c点后,在水平方向做初速度为零的匀加速直线运动,竖直方向在重力作用下做匀减速直线运动,由牛顿第二定律可知,小球离开c点后水平方向和竖直方向的加速度大小均为g,则由竖直方向的运动可知,小球从离开c点到其轨迹最高点所需的时间为t=vcg=2Rg,在水平方向的位移大小为x=12gt2=2R.由以上分析可知,小球从a点开始运动到其轨迹最高点的过程中,水平方向的位移大小为5R,则小球机械能的增加量为ΔE=F·5R=5mgR,C正确,A、B、D错误.考情分析命题研究对功能关系的考查历来是高考中的重中之重,尤其近几年全国卷对该部分知识点的命题呈现多样化,不但从动能、动能定理、机械能守恒定律等知识出发进行考查,还从运动形式的角度如平抛运动、匀变速直线运动、圆周运动等进行综合考查.在备考中一定要对本部分的基本知识如动能、势能、动能定理、机械能守恒定律、能量守恒定律等熟练掌握,并注意知识点在运动形式中的应用功、功率与动能定理【高分快攻】1.功和功率的计算方法2.应用动能定理解题的基本思路【典题例析】(多选)(2018·高考全国卷Ⅲ)地下矿井中的矿石装在矿车中,用电机通过竖井运送到地面.某竖井中矿车提升的速度大小v随时间t的变化关系如图所示,其中图线①②分别描述两次不同的提升过程,它们变速阶段加速度的大小都相同;两次提升的高度相同,提升的质量相等.不考虑摩擦阻力和空气阻力.对于第①次和第②次提升过程,()A.矿车上升所用的时间之比为4∶5B.电机的最大牵引力之比为2∶1C.电机输出的最大功率之比为2∶1D.电机所做的功之比为4∶5[解析]根据位移相同可得两图线与时间轴围成的面积相等,12v0×2t0=12×12v0[2t0+t′+(t0+t′)],解得t′=12t0,则对于第①次和第②次提升过程中,矿车上升所用的时间之比为2t0∶(2t0+12t0)=4∶5,A正确;加速过程中的牵引力最大,且已知两次加速时的加速度大小相等,故两次中最大牵引力相等,B错误;由题知两次提升的过程中矿车的最大速度之比为2∶1,由功率P=Fv,得最大功率之比为2∶1,C正确;两次提升过程中矿车的初、末速度都为零,则电机所做的功等于克服重力做的功,重力做的功相等,故电机所做的功之比为1∶1,D错误.[答案]AC【题组突破】角度1恒力做功的计算1.(2017·高考全国卷Ⅲ)如图,一质量为m,长度为l的均匀柔软细绳PQ竖直悬挂.用外力将绳的下端Q缓慢地竖直向上拉起至M点,M点与绳的上端P相距13l.重力加速度大小为g.在此过程中,外力做的功为()A.19mglB.16mglC.13mglD.12mgl解析:选A.QM段绳的质量为m′=23m,未拉起时,QM段绳的重心在QM中点处,与M点距离为13l,绳的下端Q拉到M点时,QM段绳的重心与M点距离为16l,此过程重力做功WG=-m′g13l-16l=-19mgl,对绳的下端Q拉到M点的过程,应用动能定理,可知外力做功W=-WG=19mgl,可知A项正确,B、C、D项错误.角度2巧解变力做功问题2.(多选)(2019·衡水中学信息卷)如图所示,倾角为θ、半径为R的倾斜圆盘绕圆心处的转轴O以角速度ω匀速转动,一个质量为m的小物块放在圆盘的边缘,小物块与圆盘间的动摩擦因数为μ.图中A、B分别为小物块转动过程中所经过的最高点和最低点,运动过程中经过的C、D两点连线与AB垂直,小物块与圆盘间的最大静摩擦力等于滑动摩擦力,且始终相对于圆盘静止.重力加速度为g,下列说法正确的是()A.小物块受到的摩擦力始终指向圆心B.动摩擦因数μ一定大于tanθC.小物块从A点运动到B点的过程中,摩擦力对小物块做功为-μmgπRcosθD.当小物块运动至C、D两点时所受摩擦力大小相等,从C点运动到D点的过程中摩擦力对小物块先做负功后做正功解析:选BD.小物块所受重力沿圆盘的分力及静摩擦力的合力提供向心力,始终指向圆心,A错误;小物块在B点时由牛顿第二定律Ff-mgsinθ=mRω2,Ffmgsinθ,又因Ff≤μmgcosθ,所以μmgcosθmgsinθ,则μ一定大于tanθ,B正确;小物块从A点运动到B点的过程中由动能定理得mg·2Rsinθ+WFf=0,解得WFf=-mg·2Rsinθ,C错误;小物块运动至C、D两点时受力具有对称性.所受静摩擦力大小相等,方向关于AB对称,从C点运动到D点的过程中,重力先做正功后做负功,小物块动能始终不变,即合外力做功始终为0,所以摩擦力对小物块先做负功后做正功,D正确.角度3往复运动问题中动能定理的应用3.如图所示,质量为m的滑块距挡板P的距离为l0,滑块以初速度v0沿倾角为θ的斜面上滑,滑块与斜面间的动摩擦因数为μ,滑块所受摩擦力小于重力沿斜面向下的分力.若滑块每次与挡板相碰均无机械能损失,滑块经过的总路程是()A.1μv202gcosθ+l0tanθB.1μv202gsinθ+l0tanθC.2μv202gcosθ+l0tanθD.1μv202gcosθ+l0cotθ解析:选A.滑块所受摩擦力小于重力沿斜面向下的分力,因此滑块最终必定停在挡板P处.设滑块经过的总路程为l,对滑块运动的全过程应用动能定理,有mgl0sinθ-μmglcosθ=0-12mv20,解得l=1μv202gcosθ+l0tanθ,选项A正确.角度4曲线运动问题中动能定理的应用4.如图所示,水平光滑轨道OA上有一质量m=2kg的小球以速度v0=20m/s向左运动,从A点飞出后恰好无碰撞地经过B点,B是半径为R=10m的光滑圆弧轨道的右端点,C为轨道最低点,且圆弧BC所对圆心角θ=37°,又与一动摩擦因数μ=0.2的粗糙水平直轨道CD相连,CD长为15m.进入另一竖直光滑半圆轨道,半圆轨道最高点为E,该轨道的半径也为R.不计空气阻力,物块均可视为质点,重力加速度取g=10m/s2,sin37°=0.6,cos37°=0.8,求:(1)A、B两点的高度差和物块在C点对圆弧轨道的压力;(2)通过计算分析甲物块能否经过E点.解析:(1)由题意知:在B点速度方向沿B点切线方向,在B点速度大小为:v1=v0cos37°=25m/s竖直速度大小为vy=v0tan37°=15m/s从A点到B点的时间为:t=vyg=1.5sAB的高度差为h=12gt2=11.25m从B点到C点由动能定理得:mgR(1-cos37°)=12mv2C-12mv21所以在C点N-mg=mv2CRN=153N由牛顿第三定律可知物体对轨道的压力为153N,方向向下.(2)假设甲物块通过E点时速大小为v2,从C点运到E点,由动能定理得:-μmgx-mg·2R=12mv22-12mv2C所以在E点速度大小为v2=205m/s在E点做圆周运动时最小速度为v3,有mg=mv23R所以v3=10m/s因为v2v3,所以甲物块能经过E点.答案:(1)11.25m153N,方向向下(2)能经过E点命题角度解决方法易错辨析恒力做功的计算公式法W=Fscosθ力的大小、方向不变时才可用公式求解变力做功的计算微元法或动能定理若力不是均匀变化的,则计算时一般用动能定理命题角度解决方法易错辨析动能定理在平抛运动中的应用重力做功改变重力势能,用动能变化来分析速度的变化找准物体平抛运动的初、末位置动能定理在往返直线运动中的应用只考虑初、末位置而不用考虑中间过程且注意摩擦力做功的特点是与路程有关系一定要准确分析物体最终的位置,一般处于平衡态动能定理在圆周运动中的应用向心力不做功,利用动能定理把特殊点的运动推广到一般位置准确找到圆周运动中的临界位置即速度极值点机车启动问题【高分快攻】1.机车匀加速启动过程的最大速度v1(此时机车输出的功率最大)和全程的最大速度vm(此时F牵=F阻)求解方法(1)求v1:由F牵-F阻=ma,P=F牵v1,可求v1=PF阻+ma.(2)求vm:由P=F阻vm,可求vm=PF阻.2.解决机车启动问题时的四点注意(1)分清是匀加速启动还是恒定功率启动.(2)匀加速启动过程中,机车功率不断增大,最大功率是额定功率.(3)以额定功率启动的过程中,牵引力不断减小,机车做加速度减小的加速运动,牵引力的最小值等于阻力.(4)无论哪种启动方式,最后达到最大速度时,均满足P=f阻vm,P为机车的额定功率.【典题例析】(2019·烟台模拟)一汽车在平直公路上行驶.从某时刻开始计时,发动机的功率P随时间t的变化如图所示.假定汽车所受阻力的大小f恒定不变.下列描述该汽车的速度v随时间t变化的图线中,可能正确的是()[解析]由P-t图象知:0~t1内汽车以恒定功率P1行驶,t1~t2内汽车以恒定功率P2行驶.设汽车所受牵引力为F,则由P=Fv得,当v增加时,F减小,由a=F-fm知a减小,又因速度不可能突变,所以选项B、C、D错误,选项A正确.[答案]A【题组突破】角度1以恒定功率启动方式的分析1.(多选)质量为m的汽车在平直路面上启动,启动过程的v-t图象如图所示.从t1时刻起牵引力的功率保持不变,整个运动过程中汽车所受阻力恒为Ff,则()A.0~t1时间内,汽车的牵引力等于mv1t1B.t1~t2时间内,汽车的功率等于mv1t1+Ffv1C.汽车运动的最大速度v2=mv1Fft1+1v1D.t1~t2时间内,汽车的平均速度小于v

1 / 71
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功