高中数学学习方法

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

高中数学学习方法第一部分:高中数学学习方法(共5种)篇一:高中数学学习方法谈高中数学学习方法谈进入高中以后,往往有不少同学不能适应数学学习,进而影响到学习的积极性,甚至成绩一落千丈。出现这样的情况,原因很多。但主要是由于学生不了解高中数学教学内容特点与自身学习方法有问题等因素所造成的。在此结合高中数学教学内容的特点,谈一下高中数学学习方法,供同学参考。一、高中数学与初中数学特点的变化1、数学语言在抽象程度上突变初、高中的数学语言有着显著的区别。初中的数学主要是以形象、通俗的语言方式进行表达。而高一数学一下子就触及非常抽象的集合语言、逻辑运算语言、函数语言、图象语言等。2、思维方法向理性层次跃迁高一学生产生数学学习障碍的另一个原因是高中数学思维方法与初中阶段大不相同。初中阶段,很多老师为学生将各种题建立了统一的思维模式,如解分式方程分几步,因式分解先看什么,再看什么等。因此,初中学习中习惯于这种机械的,便于操作的定势方式,而高中数学在思维形式上产生了很大的变化,数学语言的抽象化对思维能力提出了高要求。这种能力要求的突变使很多高一新生感到不适应,故而导致成绩下降。3、知识内容的整体数量剧增高中数学与初中数学又一个明显的不同是知识内容的“量”上急剧增加了,单位时间内接受知识信息的量与初中相比增加了许多,辅助练习、消化的课时相应地减少了。4、知识的独立性大初中知识的系统性是较严谨的,给我们学习带来了很大的方便。因为它便于记忆,又适合于知识的提取和使用。但高中的数学却不同了,它是由几块相对独立的知识拼合而成(如高一有集合,命题、不等式、函数的性质、指数和对数函数、指数和对数方程、三角比、三角函数、数列等),经常是一个知识点刚学得有点入门,马上又有新的知识出现。因此,注意它们内部的小系统和各系统之间的联系成了学习时必须花力气的着力点。二、如何学好高中数学1、养成良好的学习数学习惯。建立良好的学习数学习惯,会使自己学习感到有序而轻松。高中数学的良好习惯应是:多质疑、勤思考、好动手、重归纳、注意应用。学生在学习数学的过程中,要把教师所传授的知2、及时了解、掌握常用的数学思想和方法学好高中数学,需要我们从数学思想与方法高度来掌握它。中学数学学习要重点掌握的的数学思想有以上几个:集合与对应思想,分类讨论思想,数形结合思想,运动思想,转化思想,变换思想。有了数学思想以后,还要掌握具体的方法,比如:换元、待定系数、数学归纳法、分析法、综合法、反证法等等。在具体的方法中,常用的有:观察与实验,联想与类比,比较与分类,分析与综合,归纳与演绎,一般与特殊,有限与无限,抽象与概括等。解数学题时,也要注意解题思维策略问题,经常要思考:选择什么角度来进入,应遵循什么原则性的东西。高中数学中经常用到的数学思维策略有:以简驭繁、数形结合、进退互用、化生为熟、正难则反、倒顺相还、动静转换、分合相辅等。3、逐步形成“以我为主”的学习模式数学不是靠老师教会的,而是在老师的引导下,靠自己主动的思维活动去获取的。学习数学就要积极主动地参与学习过程,养成实事求是的科学态度,独立思考、勇于探索的创新精神;正确对待学习中的困难和挫折,败不馁,胜不骄,养成积极进取,不屈不挠,耐挫折的优良心理品质;在学习过程中,要遵循认识规律,善于开动脑筋,积极主动去发现问题,注重新旧知识间的内在联系,不满足于现成的思路和结论,经常进行一题多解,一题多变,从多侧面、多角度思考问题,挖掘问题的实质。学习数学一定要讲究“活”,只看书不做题不行,只埋头做题不总结积累也不行。对课本知识既要能钻进去,又要能跳出来,结合自身特点,寻找最佳学习方法。4、针对自己的学习情况,采取一些具体的措施2记数学笔记,特别是对概念理解的不同侧面和数学规律,教师在课堂中拓展的课外知识。记录下来本章你觉得最有价值的思想方法或例题,以及你还存在的未解决的问题,以便今后将其补上。2建立数学纠错本。把平时容易出现错误的知识或推理记载下来,以防再犯。争取做到:找错、析错、改错、防错。达到:能从反面入手深入理解正确东西;能由果朔因把错误原因弄个水落石出、以便对症下药;解答问题完整、推理严密。2熟记一些数学规律和数学小结论,使自己平时的运算技能达到了自动化或半自动化的熟练程度。2经常对知识结构进行梳理,形成板块结构,实行“整体集装”,如表格化,使知识结构一目了然;经常对习题进行类化,由一例到一类,由一类到多类,由多类到统一;使几类问题归纳于同一知识方法。2阅读数学课外书籍与报刊,参加数学学科课外活动与讲座,多做数学课外题,加大自学力度,拓展自己的知识面。2及时复习,强化对基本概念知识体系的理解与记忆,进行适当的反复巩固,消灭前学后忘。2学会从多角度、多层次地进行总结归类。如:①从数学思想分类②从解题方法归类③从知识应用上分类等,使所学的知识系统化、条理化、专题化、网络化。2经常在做题后进行一定的“反思”,思考一下本题所用的基础知识,数学思想方法是什么,为什么要这样想,是否还有别的想法和解法,本题的分析方法与解法,在解其它问题时,是否也用到过。2无论是作业还是测验,都应把准确性放在第一位,通法放在第一位,而不是一味地去追求速度或技巧,这是学好数学的重要问题。对新初三学生来说,学好数学,首先要抱着浓厚的兴趣去学习数学,积极展开思维的翅膀,主动地参与教育全过程,充分发挥自己的主观能动性,愉快有效地学数学。其次要掌握正确的学习方法。锻炼自己学数学的能力,转变学习方式,要改变单纯接受的学习方式,要学会采用接受学习与探究学习、合作学习、体验学习等多样化的方式进行学习,要在教师的指导下逐步学会“提出问题—实验探究—开展讨论—形成新知—应用反思”的学习方法。这样,通过学习方式由单一到多样的转变,我们在学习活动中的自主性、探索性、合作性就能够得到加强,成为学习的主人。在新学期要上好每一节课,数学课有知识的发生和形成的概念课,有解题思路探索和规律总结的习题课,有数学思想方法提炼和联系实际的复习课。要上好这些课来学会数学知识,掌握学习数学的方法。概念课要重视教学过程,要积极体验知识产生、发展的过程,要把知识的来龙去脉搞清楚,认识知识发生的过程,理解公式、定理、法则的推导过程,改变死记硬背的方法,这样我们就能从知识形成、发展过程当中,理解到学会它的乐趣;在解决问题的过程中,体会到成功的喜悦。习题课要掌握“听一遍不如看一遍,看一遍不如做一遍,做一遍不如讲一遍,讲一遍不如辩一辩”的诀窍。除了听老师讲,看老师做以外,要自己多做习题,而且要把自己的体会主动、大胆地讲给大家听,遇到问题要和同学、老师辩一辩,坚持真理,改正错误。在听课时要注意老师展示的解题思维过程,要多思考、多探究、多尝试,发现创造性的证法及解法,学会“小题大做”和“大题小做”的解题方法,即对选择题、填空题一类的客观题要认真对待绝不粗心大意,就像对待大题目一样,做到下笔如有神;对综合题这样的大题目不妨把“大”拆“小”,以“退”为“进”,也就是把一个比较复杂的问题,拆成或退为最简单、最原始的问题,把这些小题、简单问题想通、想透,找出规律,然后再来一个飞跃,进一步升华,就能凑成一个大题,即退中求进了。如果有了这种分解、综合的能力,加上有扎实的基本功还有什么题目难得倒我们。复习课最后,要有意识地培养好自己个人的心理素质,全面系统地进行心理训练,要有决心、信心、恒心,更要有一颗平常心。高中数学学习方法之我见1一本书2两方法1)找到已知与求解的“桥梁”。主要针对中等题及难题,利用已知,推一步或几步,完成转化,从求解往后推几步,看看还缺什么,再去回忆脑袋里的知识点及解过的经典题,把已知与求解的差距补上,这个就是“桥梁”原理。2)有些题按上述方法还遇到困难,可能需要另辟蹊径,如从定义出发或需要再审视已知条件,可能还未用尽已知条件或有些暗含的已知条件未挖掘出来。3三部曲:1)先看教科书,真正搞懂课本例题,并做课后练习(虽然看上去很简单,但是实质上就是要你检查自己是否真的掌握这些基本知识点.),2)利用历年高考真题,这些题很有价值,先掩着答案,根据你之前课本学的基础内容,尝试自己亲自动手做一下,再对答案,明白其原理.,真正弄懂它,看看能否举一反三,可问老师及同学,也可请家教,最后达到触类旁通。3)同步练习,必须紧跟课程,不能赖下来的,一步一个脚印去做.数学知识点较多,容易忘记,但以上的步骤你都能做到的话,那么就不那么容易遗忘,即使忘记,你也可以翻阅以前的内容重新巩固一遍.4四层次1)基本知识点。含概念、定义、定理、公式等,这是基础,这个不过关,其他免谈。笔者平时先看教科书,就是这个道理。--这部分,虽然重要,但笔者辅导不作重点,只是检查与提醒,因为可自学及问自己老师同学。会这个的人太容易找到了。2)数学思想与数学技能。数学思想如方程函数思想、数形结合思想、对称思想、分类讨论思想,化归思想;数学技能如配方、待定系数法等。笔者由于这方面强,故多年不做题或见到陌生题均不慌,因为这些思想能力是深入骨髓的。3)数学模型与中间结论。数学模型就是具体题目的解题套路,中间结论可使学生减少解题步骤,加快解题速度,减少出错机会。这些有了2数学思想与数学技能,就能自己推导出来,但要注意总结与积累。4)特殊解题技巧。这个要求以上3方面都较强,聪明加灵感,平时善于总结与归纳,看透事物本源,熟能生巧,触类旁通。故对中等生不作过高要求,所谓可遇而不可求。笔者对高考实考试卷的选择与填空,特别是选择,有相当部分,有的试卷甚至一半以上可在题读完后,几秒得出正确答案。凭的就是这个本事。一、利用计算机绘制生动、形象的立体图形,使学生通过对直观图形透彻的观察,理解抽象的理论概念。在多面体与旋转体的体积这一章中,主要内容是柱、锥、台、球四种体积公式的推导,关键是对立体图形分析与理解。为了帮助学生在观察图形的基础上从感性认识向理性认识过渡,我们运用我校的计算机设备,与专职电脑编程人员密切合作,设计编制了图形软件来辅助教学。我们先根据讲解的需要设计出基本图形,再配合编程人员利用计算机先进的绘图系统进行绘制。在绘制过程中,我们利用画面的连续移动构成动画来体现切割、旋转、移动等动态动作。在讲解祖原理时,其主要内容为:两个等高的几何体,若被平行于底的平面截得的两个截面面积相等,则这两个几何体的体积相等。为了体现其中的关键点:两个几何体任意位置的平行截面相等,我们绘制了多幅不同位置截面的图形,并将截面涂上鲜明的色彩,按顺序编排好,连续播放时即形成了截面上下移动的动画效果,使学生形象地认识到不同位置的平行截面处处相等。又如在讲解锥体的体积公式推导时,由于要将三棱柱分割成三个三棱锥,图形变化较大,学生不易理解,因此我们将切割过程从头至尾展现给学生,在讲解时又将所要比较的两个三棱锥逐步恢复到切割前的状态,再分开。随着分开一复原一再分开的移动过程,学生们清楚自然地得出了所要推证的结论,同时也使得教师的讲解轻松而且顺理成章。有了锥的体积公式,我们又进一步依据大锥被平行于底的平面截去一小锥得到台体的思路,利用已推导出的锥体体积公式去推导台体的体积公式。我们利用动画效果使一平面进行移动呈现出动割大锥的过程,即让平面从大锥锥体某处以平行于底的方式插入,从另一侧抽出,留下切割的痕迹,进而将截得的小锥移到其它位置,将剩下的台体展现给学生。这一过程的加入,在学生的头脑中非常深刻地留下了台体与锥体的联系,可以说是过目不忘,收到了很好的效果。二、充分利用计算机绘图多功能的优越性,从多方位、多角度、多侧面描绘立体图形,解决平面立体图形与真实立体图形在视觉上的差异。我们在平面上绘制立体图形就要考虑到视觉差异的问题。比如,在纸上画一个立方体,它的某些面就必须呈平行四边形,才给人一种体的感觉,而实际上立方体的各个面均为正方形。为了不使学生把直观感觉当作概念,我们设计了一些旋转变形动作。在讲球的体积公式时,应用祖原理,找到了一个与半球体积相等的几何体,即与半球等高的圆柱中间挖去一个圆锥,证明的关键是推导出二者在等高处的平行截面面积相等。从图上看,这两个截面分别为椭圆和椭圆环,而实际形状应为圆和圆环。为了

1 / 29
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功