难点9 弹簧类问题求解策略

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

难点9弹簧类问题求解策略在中学阶段,凡涉及的弹簧都不考虑其质量,称之为轻弹簧,是一种常见的理想化物理模型.弹簧类问题多为综合性问题,涉及的知识面广,要求的能力较高,是高考的难点之一.●难点磁场1.(★★★★)(1999年全国)如图9-1所示,两木块的质量分别为m1和m2,两轻质弹簧的劲度系数分别为k1和k2,上面木块压在上面的弹簧上(但不拴接),整个系统处于平衡状态.现缓慢向上提上面的木块,直到它刚离开上面弹簧.在这过程中下面木块移动的距离为A.11kgmB.12kgmC.21kgmD.22kgm图9—1图9—22.(★★★★)如图9-2所示,劲度系数为k1的轻质弹簧两端分别与质量为m1、m2的物块1、2拴接,劲度系数为k2的轻质弹簧上端与物块2拴接,下端压在桌面上(不拴接),整个系统处于平衡状态.现施力将物块1缓慢地竖直上提,直到下面那个弹簧的下端刚脱离桌面.在此过程中,物块2的重力势能增加了______,物块1的重力势能增加了________.3.(★★★★★)质量为m的钢板与直立轻弹簧的上端连接,弹簧下端固定在地上.平衡时弹簧的压缩量为x0,如图9-3所示.一物块从钢板正上方距离为3x0的A处自由落下,打在钢板上并立刻与钢板一起向下运动,但不粘连.它们到达最低点后又向上运动.已知物块质量为m时,它们恰能回到O点.若物块质量为2m,仍从A处自由落下,则物块与钢板回到O点时,还具有向上的速度.求物块向上运动到达的最高点与O点的距离.●案例探究[例1](★★★★)如图9-4,轻弹簧和一根细线共同拉住一质量为m的物体,平衡时细线水平,弹簧与竖直夹角为θ,若突然剪断细线,刚刚剪断细线的瞬间,物体的加速度多大?命题意图:考查理解能力及推理判断能力.B级要求.错解分析:对弹簧模型与绳模型瞬态变化的特征不能加以区分,误认为弹簧弹力在细线剪断的瞬间发生突变从而导致错解.解题方法与技巧:弹簧剪断前分析受力如图9-5,由几何关系可知:图9-3图9-4弹簧的弹力T=mg/cosθ细线的弹力T′=mgtanθ细线剪断后由于弹簧的弹力及重力均不变,故物体的合力水平向右,与T′等大而反向,∑F=mgtanθ,故物体的加速度a=gtanθ,水平向右.[例2](★★★★★)A、B两木块叠放在竖直轻弹簧上,如图9-6所示,已知木块A、B质量分别为0.42kg和0.40kg,弹簧的劲度系数k=100N/m,若在木块A上作用一个竖直向上的力F,使A由静止开始以0.5m/s2的加速度竖直向上做匀加速运动(g=10m/s2).(1)使木块A竖直做匀加速运动的过程中,力F的最大值;(2)若木块由静止开始做匀加速运动,直到A、B分离的过程中,弹簧的弹性势能减少了0.248J,求这一过程F对木块做的功.命题意图:考查对物理过程、状态的综合分析能力.B级要求.错解分析:此题难点和失分点在于能否通过对此物理过程的分析后,确定两物体分离的临界点,即当弹簧作用下的两物体加速度、速度相同且相互作用的弹力N=0时,恰好分离.解题方法与技巧:当F=0(即不加竖直向上F力时),设A、B叠放在弹簧上处于平衡时弹簧的压缩量为x,有kx=(mA+mB)gx=(mA+mB)g/k①对A施加F力,分析A、B受力如图9-7对AF+N-mAg=mAa②对Bkx′-N-mBg=mBa′③可知,当N≠0时,AB有共同加速度a=a′,由②式知欲使A匀加速运动,随N减小F增大.当N=0时,F取得了最大值Fm,即Fm=mA(g+a)=4.41N又当N=0时,A、B开始分离,由③式知,此时,弹簧压缩量kx′=mB(a+g)x′=mB(a+g)/k④AB共同速度v2=2a(x-x′)⑤由题知,此过程弹性势能减少了WP=EP=0.248J设F力功WF,对这一过程应用动能定理或功能原理WF+EP-(mA+mB)g(x-x′)=21(mA+mB)v2⑥联立①④⑤⑥,且注意到EP=0.248J可知,WF=9.64×10-2J●锦囊妙计一、高考要求轻弹簧是一种理想化的物理模型,以轻质弹簧为载体,设置复杂的物理情景,考查力的概念,物体的平衡,牛顿定律的应用及能的转化与守恒,是高考命题的重点,此类命题几乎每年高考卷面均有所见.应引起足够重视.二、弹簧类命题突破要点1.弹簧的弹力是一种由形变而决定大小和方向的力.当题目中出现弹簧时,要注意弹力的大小与方向时刻要与当时的形变相对应.在题目中一般应从弹簧的形变分析入手,先确定弹图9-5图9-6图9-7簧原长位置,现长位置,找出形变量x与物体空间位置变化的几何关系,分析形变所对应的弹力大小、方向,以此来分析计算物体运动状态的可能变化.2.因弹簧(尤其是软质弹簧)其形变发生改变过程需要一段时间,在瞬间内形变量可以认为不变.因此,在分析瞬时变化时,可以认为弹力大小不变,即弹簧的弹力不突变.3.在求弹簧的弹力做功时,因该变力为线性变化,可以先求平均力,再用功的定义进行计算,也可据动能定理和功能关系:能量转化和守恒定律求解.同时要注意弹力做功的特点:Wk=-(21kx22-21kx12),弹力的功等于弹性势能增量的负值.弹性势能的公式Ep=21kx2,高考不作定量要求,可作定性讨论.因此,在求弹力的功或弹性势能的改变时,一般以能量的转化与守恒的角度来求解.●歼灭难点训练1.(★★★)如图9-8所示,小球在竖直力F作用下将竖直弹簧压缩,若将力F撤去,小球将向上弹起并离开弹簧,直到速度变为零为止,在小球上升的过程中A.小球的动能先增大后减小B.小球在离开弹簧时动能最大C.小球的动能最大时弹性势能为零D.小球的动能减为零时,重力势能最大图9—8图9—92.(★★★★)(2000年春)一轻质弹簧,上端悬挂于天花板,下端系一质量为M的平板,处在平衡状态.一质量为m的均匀环套在弹簧外,与平板的距离为h,如图9-9所示.让环自由下落,撞击平板.已知碰后环与板以相同的速度向下运动,使弹簧伸长.A.若碰撞时间极短,则碰撞过程中环与板的总动量守恒B.若碰撞时间极短,则碰撞过程中环与板的总机械能守恒C.环撞击板后,板的新的平衡位置与h的大小无关D.在碰后板和环一起下落的过程中,它们减少的动能等于克服弹簧力所做的功3.(★★★)如图9-10所示的装置中,木块B与水平桌面间的接触是光滑的,子弹A沿水平方向射入木块后留在木块内,将弹簧压缩到最短.现将子弹、木块和弹簧合在一起作为研究对象(系统),则此系统在从子弹开始射入木块到弹簧压缩至最短的整个过程中A.动量守恒,机械能守恒B.动量不守恒,机械能不守恒C.动量守恒,机械能不守恒D.动量不守恒,机械能守恒4.(★★★★)如图9-11所示,轻质弹簧原长L,竖直固定在地面上,质量为m的小球从距地面H高处由静止开始下落,正好落在弹簧上,使弹簧的最图9-10图9-11大压缩量为x,在下落过程中,空气阻力恒为f,则弹簧在最短时具有的弹性势能为Ep=________.5.(★★★★)(2001年上海)如图9-12(A)所示,一质量为m的物体系于长度分别为l1、l2的两根细线上,l1的一端悬挂在天花板上,与竖直方向夹角为θ,l2水平拉直,物体处于平衡状态.现将l2线剪断,求剪断瞬时物体的加速度.(1)下面是某同学对该题的一种解法:解:设l1线上拉力为T1,l2线上拉力为T2,重力为mg,物体在三力作用下保持平衡:T1cosθ=mg,T1sinθ=T2,T2=mgtanθ剪断线的瞬间,T2突然消失,物体即在T2反方向获得加速度.因为mgtanθ=ma,所以加速度a=gtanθ,方向在T2反方向.你认为这个结果正确吗?请对该解法作出评价并说明理由.(2)若将图A中的细线l1改为长度相同、质量不计的轻弹簧,如图9-12(B)所示,其他条件不变,求解的步骤与(1)完全相同,即a=gtanθ,你认为这个结果正确吗?请说明理由.6.(★★★★★)如图9-13所示,A、B、C三物块质量均为m,置于光滑水平台面上.B、C间夹有原已完全压紧不能再压缩的弹簧,两物块用细绳相连,使弹簧不能伸展.物块A以初速度v0沿B、C连线方向向B运动,相碰后,A与B、C粘合在一起,然后连接B、C的细绳因受扰动而突然断开,弹簧伸展,从而使C与A、B分离,脱离弹簧后C的速度为v0.(1)求弹簧所释放的势能ΔE.(2)若更换B、C间的弹簧,当物块A以初速v向B运动,物块C在脱离弹簧后的速度为2v0,则弹簧所释放的势能ΔE′是多少?(3)若情况(2)中的弹簧与情况(1)中的弹簧相同,为使物块C在脱离弹簧后的速度仍为2v0,A的初速度v应为多大?参考答案:[难点磁场]1.C2.21km2(m1+m2)g2;(2211kk)m1(m1+m2)g23.21x0[歼灭难点训练]1.AD2.AC3.B图9—12图9-134.分析从小球下落到压缩最短全过程由动能定理:(mg-f)(H-L+x)-W弹性=0W弹性=Ep=(mg-f)(H-L+x)5.(1)结果不正确.因为l2被剪断的瞬间,l1上张力的大小发生了突变,此瞬间T2=mgcosθ,a=gsinθ(2)结果正确,因为l2被剪断的瞬间、弹簧l1的长度不能发生突变、T1的大小和方向都不变.6.(1)31mv02(2)121m(v-6v0)2(3)4v0

1 / 6
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功