第1页共5页2019年中考数学考前15天冲刺强化练习131.如图,AB是⊙O的直径,CB,CD分别切⊙O于B,D两点,点E在CD的延长线上,且CE=AE+BC.(1)求证:AE是⊙O的切线;(2)若∠C=60°,AB=10,求弧BD的长;(3)过点D作DF⊥AB于点F,连接BE交DF于点M.求证:DM=MP.2.如图所示,某数学活动小组要测量山坡上的电线杆PQ的高度,他们在A处测得信号塔顶端P的仰角是45°,信号塔底端点Q的仰角为31°,沿水平地面向前走100米到B处,测得信号塔顶端P的仰角是68°,求信号塔PQ的高度.(结果精确到0.1米,参考数据:sin68°≈0.93,cos68°≈0.37,tan68°≈2.48,tan31°≈0.60,sin31°≈0.52,cos31°≈0.86)第2页共5页3.某商店经营儿童益智玩具,已知成批购进时的单价是20元.调查发现:销售单价是30元时,月销售量是230件,而销售单价每上涨1元,月销售量就减少10件,但每件玩具售价不能高于40元.设每件玩具的销售单价上涨了x元时(x为正整数),月销售利润为y元.(1)求y与x的函数关系式并直接写出自变量x的取值范围;(2)每件玩具的售价定为多少元时,月销售利润恰为2520元?(3)每件玩具的售价定为多少元时可使月销售利润最大?最大的月利润是多少?4.在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为D,E,F分别是AC,BC边上一点.(1)求证:=;(2)若CE=AC,BF=BC,求∠EDF的度数.第3页共5页5.如图1,已知抛物线y=﹣x2+bx+c与x轴交于A(﹣1,0),B(3,0)两点,与y轴交于C点,点P是抛物线上在第一象限内的一个动点,且点P的横坐标为t.(1)求抛物线的表达式;(2)设抛物线的对称轴为l,l与x轴的交点为D.在直线l上是否存在点M,使得四边形CDPM是平行四边形?若存在,求出点M的坐标;若不存在,请说明理由.(3)如图2,连接BC,PB,PC,设△PBC的面积为S.①求S关于t的函数表达式;②求P点到直线BC的距离的最大值,并求出此时点P的坐标.第4页共5页参考答案1.略2.3.解:(1)依题意得自变量x的取值范围是0<x≤10且x为正整数;(2)当y=2520时,得(元)解得x1=2,x2=11(不合题意,舍去)当x=2时,30+x=32(元)所以,每件玩具的售价定为32元时,月销售利润恰为2520元;(3)∵a=-10<0∴当x=6.5时,y有最大值为2722.5∵0<x≤10(1≤x≤10也正确)且x为正整数∴当x=6时,30+x=36,y=2720(元)当x=7时,30+x=37,y=2720(元)所以,每件玩具的售价定为36元或37元时,每个月可获得最大利润.最大的月利润是2720元.4.解:(1)∵CD⊥AB,∴∠A+∠ACD=90°又∵∠A+∠B=90°∴∠B=∠ACD∴Rt△ADC∽Rt△CDB∴=;(2)∵==,又∵∠ACD=∠B,∴△CED∽△BFD;∴∠CDE=∠BDF;∴∠EDF=∠EDC+∠CDF=∠BDF+∠CDF=∠CDB=90°.第5页共5页5.解: