2018-2019学年辽宁省大连市中山区九年级(上)期末数学模拟试卷一.选择题(共8小题,满分24分,每小题3分)1.如图,△OAB绕点O逆时针旋转85°得到△OCD,若∠A=110°,∠D=40°,则∠α的度数是()A.35°B.45°C.55°D.65°2.如图,⊙O是△ABC的外接圆,∠OCB=40°,则∠A的大小为()A.40°B.50°C.80°D.100°3.如图,在正三角形网格中,菱形M经过旋转变换能得到菱形N,下列四个点中能作为旋转中心的是()A.点AB.点BC.点CD.点D4.关于x的一元二次方程x2﹣(k+3)x+k=0的根的情况是()A.有两不相等实数根B.有两相等实数根C.无实数根D.不能确定5.函数y=﹣2x2先向右平移1个单位,再向下平移2个单位,所得函数解析式是()A.y=﹣2(x﹣1)2+2B.y=﹣2(x﹣1)2﹣2C.y=﹣2(x+1)2+2D.y=﹣2(x+1)2﹣26.点A(a,3)与点B(﹣4,b)关于原点对称,则a+b=()A.﹣1B.4C.﹣4D.17.某药品经过两次降价,每瓶零售价由168元降为108元,已知两次降价的百分率相同,设每次降价的百分率为x,根据题意列方程得()A.168(1﹣x)2=108B.168(1﹣x2)=108C.168(1﹣2x)=108D.168(1+x)2=1088.抛物线y=x2﹣4x+1与y轴交点的坐标是()A.(0,1)B.(1,O)C.(0,﹣3)D.(0,2)二.填空题(共8小题,满分24分,每小题3分)9.已知x=﹣1是一元二次方程ax2﹣bx+6=0的一个根,则a+b的值为10.在等边三角形、角、平行四边形、圆这些图形中,是中心对称图形,但不是轴对称图形的是.11.若x2+2(m﹣3)x+16是完全平方式,则m的值等于.12.已知关于x的函数y=(m﹣1)x2+2x+m图象与坐标轴只有2个交点,则m=.13.在半径为5cm圆内有两条互相平行的弦,一条弦长为8cm,另一条弦长为6cm,则这两条弦之间的距离为.14.代数式x2+x+3的值为7,则代数式x﹣3的值为.15.如图,已知△ABC三个顶点的坐标分别为A(0,4),B(﹣1,1),C(﹣2,2),将△ABC向右平移4个单位,得到△A′B′C′,再将A′B′C′绕点B′顺时针旋转90°,则点A″的坐标为.16.如图,在第一象限内作射线OC,与x轴的夹角为30°,在射线OC上取点A,过点A作AH⊥x轴于点H.在抛物线y=x2(x>0)上取点P,在y轴上取点Q,使得以P,O,Q为顶点,且以点Q为直角顶点的三角形与△AOH全等,则符合条件的点A的坐标是.三.解答题(共3小题,满分29分)17.解方程(1)(x﹣2)2=(2x+5)2(2)2x2+3=7x(用配方法解)18.已知:如图,在坐标平面内△ABC的顶点坐标分别为A(0,2),B(3,3),C(2,1),(正方形网格中,每个小正方形的边长是1个单位长度)(1)画出△ABC关于原点对称的△A1B1C1,并直接写出点C1点的坐标;(2)画出△ABC绕点A顺时针方向旋转90°后得到的△A2B2C2,并直接写出C2点的坐标.19.某小区利用一块空地修建一个长方形花坛,要使花坛的长比宽多5m,且面积为24m2,长方形花坛的长和宽应各是多少?四.解答题(共3小题,满分28分)20.如图,已知二次函数y=ax2﹣4x+c的图象与坐标轴交于点A(﹣1,0)和C(0,﹣5).(1)求该二次函数的解析式和它与x轴的另一个交点B的坐标;(2)设抛物线的顶点为D,求四边形ACDB的面积;(3)点P(2,﹣2)是二次函数的对称轴上一点,连接OP,找出x轴上所有点M,使得△OPM是等腰三角形,并直接写出所有点M的坐标.21.如图,在正方形ABCD中,点E,F分别在边AB,BC上,∠ADE=∠CDF.(1)求证:AE=CF;(2)连接DB交EF于点O,延长OB至点G,使OG=OD,连接EG、FG,判断四边形DEGF是怎样的四边形,并说明理由.22.某企业设计了一款工艺品,每件的成本是50元,为了合理定价,投放市场进行试销.据市场调查,销售单价是100元时,每天的销售量是50件,而销售单价每降低1元,每天就可多售出5件,但要求销售单价不得低于成本.(1)求出每天的销售利润y(元)与销售单价x(元)之间的函数关系式;(2)求出销售单价为多少元时,每天的销售利润最大?最大利润是多少?(3)如果该企业要使每天的销售利润不低于4000元,那么销售单价应控制在什么范围内?五.解答题(共3小题,满分35分)23.已知:如图,在△ABC中,AD是△ABC的高,作∠DCE=∠ACD,交AD的延长线于点E,点F是点C关于直线AE的对称点,连接AF.(1)求证:CE=AF;(2)若CD=1,AD=,且∠B=20°,求∠BAF的度数.24.已知△ABC为等边三角形.(1)如图,P为△ABC外一点,∠BPC=120°,连接PA,PB,PC,求证:PB+PC=PA;(2)如图,P为△ABC内一点,PC>PB,∠BPC=150°,若PA=5,△BPC的面积为3,求△ABC的面积.25.如图,点A,B,C都在抛物线y=ax2﹣2amx+am2+2m﹣5(﹣<a<0)上,AB∥x轴,∠ABC=135°,且AB=4.(1)填空:抛物线的顶点坐标为;(用含m的代数式表示);(2)求△ABC的面积(用含a的代数式表示);(3)若△ABC的面积为2,当2m﹣5≤x≤2m﹣2时,y的最大值为2,求m的值.参考答案一.选择题(共8小题,满分24分,每小题3分)1.【解答】解:由题意可知:∠DOB=85°,∵△DCO≌△BAO,∴∠D=∠B=40°,∴∠AOB=180°﹣40°﹣110°=30°∴∠α=85°﹣30°=55°故选:C.2.【解答】解:∵OB=OC∴∠BOC=180°﹣2∠OCB=100°,∴由圆周角定理可知:∠A=∠BOC=50°故选:B.3.【解答】解:如图所示:菱形M绕点D经过顺时针旋转60°变换能得到菱形N,故选:D.4.【解答】解:△=(k+3)2﹣4×k=k2+2k+9=(k+1)2+8,∵(k+1)2≥0,∴(k+1)2+8>0,即△>0,所以方程有两个不相等的实数根.故选:A.5.【解答】解:抛物线y=﹣2x2的顶点坐标为(0,0),把(0,0)先向右平移1个单位,再向下平移2个单位所得对应点的坐标为(1,﹣2),所以平移后的抛物线解析式为y=﹣2(x﹣1)2﹣2.故选:B.6.【解答】解:∵点A(a,3)与点B(﹣4,b)关于原点对称,∴a=4,b=﹣3,∴a+b=1,故选:D.7.【解答】解:设每次降价的百分率为x,根据题意得:168(1﹣x)2=108.故选:A.8.【解答】解:当x=0时,y=x2﹣4x+1=1,∴抛物线与y轴的交点坐标为(0,1),故选:A.二.填空题(共8小题,满分24分,每小题3分)9.【解答】解:把x=﹣1代入方程ax2﹣bx+6=0得a+b+6=0,所以a+b=﹣6.故答案为﹣6.10.【解答】解:“等边三角形”是轴对称图形也是中心对称图形,平行四边形是中心对称图形,不是轴对称图形,圆是轴对称图形也是中心对称图形,角星轴对称图形,故答案为:平行四边形.11.【解答】解:∵x2+2(m﹣3)x+16是完全平方式,∴2(m﹣3)x=±2•x•4,解得:m=7或﹣1,故答案为:7或﹣1.12.【解答】解:(1)当m﹣1=0时,m=1,函数为一次函数,解析式为y=2x+1,与x轴交点坐标为(﹣,0);与y轴交点坐标(0,1).符合题意.(2)当m﹣1≠0时,m≠1,函数为二次函数,与坐标轴有两个交点,则过原点,且与x轴有两个不同的交点,于是△=4﹣4(m﹣1)m>0,解得,(m﹣)2<,解得m<或m>.将(0,0)代入解析式得,m=0,符合题意.(3)函数为二次函数时,还有一种情况是:与x轴只有一个交点,与Y轴交于交于另一点,这时:△=4﹣4(m﹣1)m=0,解得:m=.故答案为:1或0或.13.【解答】解:①当弦A和CD在圆心同侧时,如图,∵AB=8cm,CD=6cm,∴AE=4cm,CF=3cm,∵OA=OC=5cm,∴EO=3cm,OF=4cm,∴EF=OF﹣OE=1cm;②当弦A和CD在圆心异侧时,如图,∵AB=8cm,CD=6cm,∴AF=4cm,CE=3cm,∵OA=OC=5cm,∴EO=4cm,OF=3cm,∴EF=OF+OE=7cm.故答案为:1cm或7cm.14.【解答】解:∵x2+x+3=7,∴x2+x=4,则原式=(x2+x)﹣3=×4﹣3=1﹣3=﹣2,故答案为:﹣2.15.【解答】解:如图,由图象可知:A″(6,0).故答案为(6,0).16.【解答】解:在Rt△AOH中,∠AOH=30°;由题意,可知:当∠POQ=30°或∠POQ=60°时,以点Q为直角顶点的△POQ与△AOH全等,故∠POx=60°或∠POx=30°;①当∠POx=60°时,kOP=tan60°=,所以,直线OP:y=x,联立抛物线的解析式,有:,解得,,∴P1(,3),∴A1(3,);②当∠POx=30°时,kOP=tan30°=,所以,直线OP:y=x,联立抛物线的解析式,有:,解得,,∴P2(,),∴A2(,).故答案:(,3),(,).三.解答题(共3小题,满分29分)17.【解答】解:(1)开方得:x﹣2=2x+5或x﹣2=﹣2x﹣5,解得:x1=﹣1,x2=﹣7;(2)方程整理得:x2﹣x=﹣,平方得:x2﹣x+=﹣+,即(x﹣)2=,开方得:x﹣=±,解得:x1=,x2=3.18.【解答】解:(1)△A1B1C1如图所示,C1(﹣2,﹣1);(2)△A2B2C2如图所示,C2(﹣1,0).19.【解答】解:设花坛的宽为x米,根据题意得x(x+5)=24,整理得:x2+5x﹣24=0解这个方程的x1=3x2=﹣8(不合题意舍去),∴x=3x+5=8,答:长方形花坛的长为8米,宽为3米.四.解答题(共3小题,满分28分)20.【解答】解:(1)根据题意,,解得:,∴二次函数的表达式为y=x2﹣4x﹣5,当y=0时,x2﹣4x﹣5=0,解得:x1=5,x2=﹣1,∵点A的坐标是(﹣1,0),∴B(5,0),答:该二次函数的解析式是y=x2﹣4x﹣5,和它与x轴的另一个交点B的坐标是(5,0);(2)如图1,y=x2﹣4x﹣5=(x﹣2)2﹣9,∴顶点坐标D(2,﹣9),∴OE=2,DE=9,∴S四边形ACDB=S△AOC+S梯形OCDE+S△BDE,=OA•OC+(OC+DE)×OE+BE•DE,=×1×5+×(5+9)×2+×3×9,=2.5+14+13.5,=30,所以四边形ACDB面积为:30;(3)①当OP=PN时,OE=EM=2,∴M(4,0),②当OP=OM时,OM=2,∴M1(﹣2,0),M2(2,0),③当OE=EP时,此时E与M重合,∴M(2,0),综上所述,符合条件的坐标有共有4个,分别是M1(4,0)M2(2,0)M3(﹣2,0)M4(2,0),答:x轴上所有点M的坐标是(4,0),(2,0),(﹣2,0),(2,0),使得△OPM是等腰三角形.21.【解答】(1)证明:∵四边形ABCD是正方形,∴DA=DC,∠A=∠C=90°,在△DAE和△DCF中,,∴△DAE≌△DCF,∴AE=CF;(2)四边形DEGF是菱形,∵△DAE≌△DCF,∴DE=DF,∵AE=CF,∴BE=BF,∴DG是EF的垂直平分线,∴GE=GF,∵OG=OD,DG⊥EF,∴ED=EG,∴DE=EG=GF=FD,∴四边形DEGF是菱形.22.【解答】解:(1)y=(x﹣50)[50+5(100﹣x)]=(x﹣50)(﹣5x+550)=﹣5x2+800x﹣27500,∴y=﹣5x2+800x﹣27500(50≤x≤100);(2)y=﹣5x2+800x﹣27500=﹣5(x﹣80)2+4500,∵a=﹣5<0,∴抛物线开口向下.∵50≤x≤10