2018-2019学年湖北省随州市随县九年级(上)期末数学模拟试卷一.选择题(共10小题,满分30分,每小题3分)1.下列计算正确的是()A.+=B.3﹣=3C.÷2=D.=22.如图,△ABC与△A′B′C′关于点O成中心对称,则下列结论不成立的是()A.点A与点A′是对称点B.BO=B′OC.AB∥A′B′D.∠ACB=∠C′A′B′3.某药品经过两次降价,每瓶零售价由168元降为108元,已知两次降价的百分率相同,设每次降价的百分率为x,根据题意列方程得()A.168(1﹣x)2=108B.168(1﹣x2)=108C.168(1﹣2x)=108D.168(1+x)2=1084.下列说法中,不正确的是()A.在同圆或等圆中,若两弧相等,则他们所对的弦相等B.在同一个圆中,若弦长等于半径,则该弦所对的劣弧的度数为60°C.在同一个圆中,若两弧不等,则大弧所对的圆心角较大D.若两弧的度数相等,则这两条弧是等弧5.掷一枚均匀的骰子,骰子的6个面上分别刻有1、2、3、4、5、6点,则点数为奇数的概率是()A.B.C.D.6.如图,已知AB是⊙O的直径,点P在BA的延长线上,PD与⊙O相切于点D,过点B作PD的垂线交PD的延长线于点C,若⊙O的半径为4,BC=6,则PA的长为()A.4B.2C.3D.2.57.把抛物线y=﹣2x2+4x+1的图象向左平移2个单位,再向上平移3个单位,所得的抛物线的函数关系式是()A.y=﹣2(x﹣1)2+6B.y=﹣2(x﹣1)2﹣6C.y=﹣2(x+1)2+6D.y=﹣2(x+1)2﹣68.如图,点A是反比例函数y=的图象上的一点,过点A作AB⊥x轴,垂足为B.点C为y轴上的一点,连接AC,BC.若△ABC的面积为3,则k的值是()A.3B.﹣3C.6D.﹣69.已知:如图,点P是正方形ABCD的对角线AC上的一个动点(A、C除外),作PE⊥AB于点E,作PF⊥BC于点F,设正方形ABCD的边长为x,矩形PEBF的周长为y,在下列图象中,大致表示y与x之间的函数关系的是()A.B.C.D.10.下列命题中正确的是()A.平分弦的直径垂直于弦B.圆心角的度数等于圆周角度数的2倍C.对角线相等且互相垂直的四边形是菱形D.到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线二.填空题(共6小题,满分18分,每小题3分)11.在一个不透明的盒子中装有8个白球,若干个黄球,它们除颜色不同外,其余均相同.若从中随机摸出一个球,它是白球的概率为,则黄球的个数为.12.如图,⊙O中,已知弧AB=弧BC,且弧AB:弧AmC=3:4,则∠AOC=度.13.已知圆锥的底面半径为3,母线长为6,则此圆锥侧面展开图的圆心角是.14.二次函数y=ax2+bx+c(a≠0)的函数值y与自变量x之间的部分对应值如下表:x…﹣2﹣1012…y…﹣7﹣1355…则的值为.15.关于x的方程x2+5x+m=0的一个根为﹣2,则另一个根是.16.如图,线段AB=4,M为AB的中点,动点P到点M的距离是1,连接PB,线段PB绕点P逆时针旋转90°得到线段PC,连接AC,则线段AC长度的最大值是.三.解答题(共9小题,满分72分)17.解方程:(1)5x(x+1)=2(x+1);(2)x2﹣3x﹣1=0.18.小莉的爸爸买了去看中国篮球职业联赛总决赛的一张门票,她和哥哥两人都很想去观看,可门票只有一张,读九年级的哥哥想了一个办法,拿了八张扑克牌,将数字为1,2,3,5的四张牌给小莉,将数字为4,6,7,8的四张牌留给自己,并按如下游戏规则进行:小莉和哥哥从各自的四张牌中随机抽出一张,然后将抽出的两张扑克牌数字相加,如果和为偶数,则小莉去;如果和为奇数,则哥哥去.(1)请用列表的方法求小莉去看中国篮球职业联赛总决赛的概率;(2)哥哥设计的游戏规则公平吗?若公平,请说明理由;若不公平,请你设计一种公平的游戏规则.19.淮北市某中学七年级一位同学不幸得了重病,牵动了全校师生的心,该校开展了“献爱心”捐款活动.第一天收到捐款10000元,第三天收到捐款12100元.(1)如果第二天、第三天收到捐款的增长率相同,求捐款增长率;(2)按照(1)中收到捐款的增长速度,第四天该校能收到多少捐款?20.如图,AB为⊙O的直径,点C在⊙O上,延长BC至点D,使DC=CB,延长DA与⊙O的另一个交点为E,连接AC,CE.(1)求证:∠B=∠D;(2)若AB=4,BC﹣AC=2,求CE的长.21.如图,在平面直角坐标系xOy中,已知直线y=x与反比例函数y=(k≠0)的图象交于点A,且点A的横坐标为1,点B是x轴正半轴上一点,且AB⊥OA.(1)求反比例函数的解析式;(2)求点B的坐标;(3)先在∠AOB的内部求作点P,使点P到∠AOB的两边OA、OB的距离相等,且PA=PB;再写出点P的坐标.(不写作法,保留作图痕迹,在图上标注清楚点P)22.我市某乡镇学校教学楼后面靠近一座山坡,坡面上是一块平地,如图所示,BC∥AD,斜坡AB=40米,坡角∠BAD=60°,为防夏季因瀑雨引发山体滑坡,保障安全,学校决定对山坡进行改造,经地质人员勘测,当坡角不超过45°时,可确保山体不滑坡,改造时保持坡脚A不动,从坡顶B沿BC削进到E处,问BE至少是多少米?(结果保留根号).23.某企业设计了一款工艺品,每件的成本是50元,为了合理定价,投放市场进行试销.据市场调查,销售单价是100元时,每天的销售量是50件,而销售单价每降低1元,每天就可多售出5件,但要求销售单价不得低于成本.(1)求出每天的销售利润y(元)与销售单价x(元)之间的函数关系式;(2)求出销售单价为多少元时,每天的销售利润最大?最大利润是多少?(3)如果该企业要使每天的销售利润不低于4000元,那么销售单价应控制在什么范围内?24.如图,在矩形ABCD中,AB=3,BC=4,将对角线AC绕对角线交点O旋转,分别交边AD、BC于点E、F,点P是边DC上的一个动点,且保持DP=AE,连接PE、PF,设AE=x(0<x<3).(1)填空:PC=,FC=;(用含x的代数式表示)(2)求△PEF面积的最小值;(3)在运动过程中,PE⊥PF是否成立?若成立,求出x的值;若不成立,请说明理由.25.如图,点A,B,C都在抛物线y=ax2﹣2amx+am2+2m﹣5(﹣<a<0)上,AB∥x轴,∠ABC=135°,且AB=4.(1)填空:抛物线的顶点坐标为;(用含m的代数式表示);(2)求△ABC的面积(用含a的代数式表示);(3)若△ABC的面积为2,当2m﹣5≤x≤2m﹣2时,y的最大值为2,求m的值.参考答案一.选择题(共10小题,满分30分,每小题3分)1.【解答】解:A、与不能合并,所以A选项错误;B、原式=2,所以B选项错误;C、原式=,所以C选项错误;D、原式==2,所以D选项正确.故选:D.2.【解答】解:观察图形可知,A、点A与点A′是对称点,故本选项正确;B、BO=B′O,故本选项正确;C、AB∥A′B′,故本选项正确;D、∠ACB=∠A′C′B′,故本选项错误.故选:D.3.【解答】解:设每次降价的百分率为x,根据题意得:168(1﹣x)2=108.故选:A.4.【解答】解:A、在同圆或等圆中,若两弧相等,则他们所对的弦相等,正确;B、在同一个圆中,若弦长等于半径,则该弦所对的劣弧的度数为60°,正确;C、在同一个圆中,若两弧不等,则大弧所对的圆心角较大,正确;D、若两弧的度数相等,则这两条弧不一定是等弧,错误.故选:D.5.【解答】解:由题意可得,点数为奇数的概率是:,故选:C.6.【解答】解:连接DO,∵PD与⊙O相切于点D,∴∠PDO=90°,∵∠C=90°,∴DO∥BC,∴△PDO∽△PCB,∴===,设PA=x,则=,解得:x=4,故PA=4.故选:A.7.【解答】解:原抛物线的顶点坐标为(1,3),向左平移2个单位,再向上平移3个单位得到新抛物线的顶点坐标为(﹣1,6).可设新抛物线的解析式为:y=﹣2(x﹣h)2+k,代入得:y=﹣2(x+1)2+6.故选C.8.【解答】解:连结OA,如图,∵AB⊥x轴,∴OC∥AB,∴S△OAB=S△CAB=3,而S△OAB=|k|,∴|k|=3,∵k<0,∴k=﹣6.故选:D.9.【解答】解:由题意可得:△APE和△PCF都是等腰直角三角形.∴AE=PE,PF=CF,那么矩形PEBF的周长等于2个正方形的边长.则y=2x,为正比例函数.故选:A.10.【解答】解:A、此弦不能是直径,故此选项错误;B、必须是同弧或等弧所对的圆心角和圆周角之间才有2倍的关系,故此选项错误;C、对角线互相垂直平分的四边形是菱形,故此选项错误;D、根据两条平行线间的距离的概念,故此选项正确.故选:D.二.填空题(共6小题,满分18分,每小题3分)11.【解答】解:∵在一个不透明的盒子中装有8个白球,从中随机摸出一个球,它是白球的概率为,设黄球有x个,根据题意得出:∴=,解得:x=4.故答案为:4.12.【解答】解:∵弧AB=弧BC,且弧AB:弧AmC=3:4,∴弧ABC:弧AmC=6:4,∴∠AOC的度数为(360°÷10)×4=144°.13.【解答】解:∵圆锥底面半径是3,∴圆锥的底面周长为6π,设圆锥的侧面展开的扇形圆心角为n°,=6π,解得n=180.故答案为180°.14.【解答】解:∵x=1、x=2时的函数值都是﹣1相等,∴此函数图象的对称轴为直线x=﹣==,即=﹣.故答案为:﹣.15.【解答】解:设方程的另一根为x,∵方程x2+5x+m=0的一个根为﹣2,∴x+(﹣2)=﹣5,解得x=﹣3,即方程的另一根是﹣3,故答案为:﹣3.16.【解答】解:如图所示:过点C作CD⊥y轴,垂足为D,过点P作PE⊥DC,垂足为E,延长EP交x轴于点F.∵AB=4,O为AB的中点,∴A(﹣2,0),B(2,0).设点P的坐标为(x,y),则x2+y2=1.∵∠EPC+∠BPF=90°,∠EPC+∠ECP=90°,∴∠ECP=∠FPB.由旋转的性质可知:PC=PB.在△ECP和△FPB中,,∴△ECP≌△FPB.∴EC=PF=y,FB=EP=2﹣x.∴C(x+y,y+2﹣x).∵AB=4,O为AB的中点,∴AC==.∵x2+y2=1,∴AC=.∵﹣1≤y≤1,∴当y=1时,AC有最大值,AC的最大值为=3.故答案为:3.三.解答题(共9小题,满分72分)17.【解答】解:(1)5x(x+1)﹣2(x+1)=0,(x+1)(5x﹣2)=0x+1=0或5x﹣2=0,所以x1=﹣1,x2=;(2)△=(﹣3)2﹣4×(﹣1)=13,x=,所以x1=,x2=.18.【解答】解:(1)列表如下和123545679678911789101289101113共有16种等可能的结果,和为偶数的有6种,故P(小莉去)=.(2)不公平,因为P(哥哥去)=,P(小莉去)=,哥哥去的可能性大,所以不公平.可以修改为:和大于9,哥哥去,小于9,小莉去,等于9,重新开始.19.【解答】解:(1)捐款增长率为x,根据题意得:10000(1+x)2=12100,解得:x1=0.1,x2=﹣2.1(舍去).则x=0.1=10%.答:捐款的增长率为10%.(2)根据题意得:12100×(1+10%)=13310(元),答:第四天该校能收到的捐款是13310元.20.【解答】(1)证明:∵AB为⊙O的直径,∴∠ACB=90°,∴AC⊥BC,又∵DC=CB,∴AD=AB,∴∠B=∠D;(2)解:设BC=x,则AC=x﹣2,在Rt△ABC中,AC2+BC2=AB2,∴(x﹣2)2+x2=42,解得:x1=1+,x2=1﹣(舍去),∵∠B=∠E,∠B=∠D,∴∠D=∠E,∴CD=CE,∵CD=CB,∴CE=CB=1+.21.【解答】解:(1)由题意,设点A的坐标为(1,m),∵点A在正比例函数y=x的图象上,∴m=.∴点A的坐标(1,),∵点A在反比例函数y=的图象上,∴=,解得k=,∴