河南省洛阳市2018-2019学年九年级数学上学期期末模拟试卷(pdf)

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

2018-2019学年河南省洛阳市初中数学九年级(上)期末数学模拟试卷一.选择题(共10小题,满分30分,每小题3分)1.方程x2=4x的根是()A.x=4B.x=0C.x1=0,x2=4D.x1=0,x2=﹣42.已知关于x的一元二次方程3x2+4x﹣5=0,下列说法正确的是()A.方程有两个相等的实数根B.方程有两个不相等的实数根C.没有实数根D.无法确定3.二次函数y=(x﹣2)2+3,当0≤x≤5时,y的取值范围为()A.3≤y≤12B.2≤y≤12C.7≤y≤12D.3≤y≤74.在平面直角坐标系中,将抛物线y=(x﹣2)2+1先向上平移2个单位长度,再向左平移3个单位长度,所得抛物线的解析式为()A.y=(x+1)2﹣1B.y=(x﹣5)2﹣1C.y=(x+1)2+3D.y=(x﹣5)2+35.下面四个手机应用图标中是中心对称图形的是()A.B.C.D.6.如图,在⊙O的内接△ABC中,∠ABC=30°,AC的延长线与过点B的⊙O的切线相交于点D,若⊙O的半径OC=1,BD∥OC,则CD的长为()A.1+B.C.D.7.下列事件是必然事件的是()A.NBA球员投篮10次,投中十次B.明天会下雪C.党的十九大于2017年10月18日在北京召开D.抛出一枚硬币,落地后正面朝上8.如图,一个游戏转盘中,红、黄、蓝三个扇形的圆心角度数分别为60°,90°,210°.让转盘自由转动,指针停止后落在黄色区域的概率是()A.B.C.D.9.如图,在平面直角坐标系中,点A是x轴正半轴上的一个定点,点P是双曲线y=(x>0)上的一个动点,PB⊥y轴于点B,当点P的横坐标逐渐增大时,四边形OAPB的面积将会()A.逐渐增大B.不变C.逐渐减小D.先增大后减小10.如图,在Rt△AOB中,∠AOB=90°,OA=3,OB=2,将Rt△AOB绕点O顺时针旋转90°后得Rt△FOE,将线段EF绕点E逆时针旋转90°后得线段ED,分别以O,E为圆心,OA、ED长为半径画弧AF和弧DF,连接AD,则图中阴影部分面积是()A.8﹣πB.C.3+πD.π二.填空题(共5小题,满分15分,每小题3分)11.对于任意实数a、b,定义:a◆b=a2+ab+b2.若方程(x◆2)﹣5=0的两根记为m、n,则m2+n2=.12.抛物线y=3x2﹣6x+a与x轴只有一个公共点,则a的值为.13.如图,直径为10cm的⊙O中,两条弦AB,CD分别位于圆心的异侧,AB∥CD,且,若AB=8cm,则CD的长为cm.14.如图,在平面直角坐标系中,直线y=﹣3x+3与x轴、y轴分别交于A、B两点,以AB为边在第一象限作正方形ABCD,顶点D恰好落在双曲线y=.若将正方形沿x轴向左平移b个单位长度后,点C恰好落在该双曲线上,则b的值为.15.如图,在矩形ABCD中,AD=3,将矩形ABCD绕点A逆时针旋转,得到矩形AEFG,点B的对应点E落在CD上,且DE=EF,则AB的长为.三.解答题(共8小题,满分75分)16.如图,点O是△ABC的边AB上一点,以OB为半径的⊙O交BC于点D,过点D的切线交AC于点E,且DE⊥AC.(1)证明:AB=AC;(2)设AB=cm,BC=2cm,当点O在AB上移动到使⊙O与边AC所在直线相切时,求⊙O的半径.17.水果店老板以每斤2元的价格购进某种水果若干斤,然后以每斤4元的价格出售,每天可售出100斤,通过调查发现,这种水果每斤的售价每降低0.1元,每天可多售出20斤,为保证每天至少售出260斤,老板决定降价销售.(1)若这种水果每斤售价降低x元,则每天的销售量是斤(用含x的代数式表示,需要化简);(2)销售这种水果要想每天盈利300元,老板需将每斤的售价定为多少元?18.如图是一副扑克牌中的三张牌,将它们正面向下洗均匀,甲同学从中随机抽取一张牌后放回,乙同学再从中随机抽取一张牌,用树状图(或列表)的方法,求抽出的两张牌中,牌面上的数字都是偶数的概率.19.某大型超市将进价为40元的某种服装按50元售出时,每天可以售出300套,据市场调查发现,这种服装每提高1元,销售量就减少5套,如果超市将售价定为x元,请你求出每天销售利润y元与售价x元的函数表达式.20.如图,已知△ABC中,AB为半圆O的直径,AC、BC分别交半圆O于点E、D,且BD=DE.(1)求证:点D是BC的中点.(2)若点E是AC的中点,判断△ABC的形状,并说明理由.21.如图,在平面直角坐标系xOy中,已知正比例函数y1=﹣2x的图象与反比例函数y2=的图象交于A(﹣1,a),B两点.(1)求出反比例函数的解析式及点B的坐标;(2)观察图象,请直接写出满足y≤2的取值范围;(3)点P是第四象限内反比例函数的图象上一点,若△POB的面积为1,请直接写出点P的横坐标.22.已知:如图,AB=AC,∠ABD=∠ACD,求证:BD=CD.23.(如图,在平面直角坐标系中,抛物线y=ax2﹣5ax+c交x轴于点A,点A的坐标为(4,0).(1)用含a的代数式表示c.(2)当a=时,求x为何值时y取得最小值,并求出y的最小值.(3)当a=时,求0≤x≤6时y的取值范围.(4)已知点B的坐标为(0,3),当抛物线的顶点落在△AOB外接圆内部时,直接写出a的取值范围.参考答案一.选择题(共10小题,满分30分,每小题3分)1.【解答】解:方程整理得:x(x﹣4)=0,可得x=0或x﹣4=0,解得:x1=0,x2=4,故选:C.2.【解答】解:∵△=42﹣4×3×(﹣5)=76>0,∴方程有两个不相等的实数根.故选:B.3.【解答】解:∵二次函数y=(x﹣2)2+3,∴该函数的对称轴是直线x=2,当x>2时,y随x的增大而增大,当x<2时,y随x的增大而减小,∵0≤x≤5,2﹣0=2,5﹣2=3,∴当x=2时,y取得最小值,此时y=3,当x=5时,y取得最大值,此时y=12,∴当0≤x≤5时,y的取值范围为3≤y≤12,故选:A.4.【解答】解:将抛物线y=(x﹣2)2+1先向上平移2个单位长度,再向左平移3个单位长度,得到的抛物线的解析式是将抛物线y=(x﹣2+3)2+1+2,即:y=(x+1)2+3.故选:C.5.【解答】解:A、不是中心对称图形,故本选项错误;B、是中心对称图形,故本选项正确;C、不是中心对称图形,故本选项错误;D、不是中心对称图形,故本选项错误.故选:B.6.【解答】解:连接OB.过点C作CE⊥BD于点E.∵∠ABC=30°,∴∠AOC=60°(同弧所对的圆周角是所对的圆心角的一半);∵OA=OC(⊙O的半径),∴∠ACO=∠OAC=60°(等边对等角);又BD∥OC,∴∠ACO=∠D=60°(两直线平行,同位角相等),∴∠OCD=120°(两直线平行,同旁内角互补);∵BD是⊙O的切线,∴OB⊥OC,OB⊥BD;又∵OB=OC,∴四边形CEBO是正方形,∴CE=OB=1,∴CD==;故选:B.7.【解答】解:A、NBA球员投篮10次,投中十次是随机事件,错误;B、明天会下雪是随机事件,错误;C、党的十九大于2017年10月18日在北京召开是必然事件,正确;D、抛出一枚硬币,落地后正面朝上是随机事件,错误;故选:C.8.【解答】解:∵黄扇形区域的圆心角为90°,所以黄区域所占的面积比例为=,即转动圆盘一次,指针停在黄区域的概率是,故选:B.9.【解答】解:设点P的坐标为(x,),∵PB⊥y轴于点B,点A是x轴正半轴上的一个定点,∴四边形OAPB是个直角梯形,∴四边形OAPB的面积=(PB+AO)•BO=(x+AO)•=+=+•,∵AO是定值,∴四边形OAPB的面积是个减函数,即点P的横坐标逐渐增大时四边形OAPB的面积逐渐减小.故选:C.10.【解答】解:作DH⊥AE于H,∵∠AOB=90°,OA=3,OB=2,∴AB==,由旋转的性质可知,OE=OB=2,DE=EF=AB=,∵∠OFE+∠FEO=∠OED+∠FEO=90°,∴∠OFE=∠OED∴△DHE≌△BOA,∴DH=OB=2,阴影部分面积=△ADE的面积+△EOF的面积+扇形AOF的面积﹣扇形DEF的面积=×5×2+×2×3+﹣=8﹣π,故选:A.二.填空题(共5小题,满分15分,每小题3分)11.【解答】解:∵(x◆2)﹣5=x2+2x+4﹣5,∴m、n为方程x2+2x﹣1=0的两个根,∴m+n=﹣2,mn=﹣1,∴m2+n2=(m+n)2﹣2mn=6.故答案为:6.12.【解答】解:∵抛物线y=3x2﹣6x+a与x轴只有一个公共点,∴△=36﹣12a=0,解得:a=3,故答案为:313.【解答】解:过O作OE⊥AB于E,交⊙O于M,反向延长OE交CD于G,交⊙O于N,则AE=AB=4,连接AN,AO,AM,则MN为⊙O的直径,∵AB∥CD,∴MN⊥CD,∴=,∵=2,∴=,∴AN=CD,在Rt△AOE中,OE===3,∴ME=5﹣3=2,在Rt△AEM中,AM===2,∵MN为⊙O的直径,∴∠MAN=90°,∴AN==4,∴CD=AN=4,故答案为:4.14.【解答】解:作CE⊥y轴于点E,交双曲线于点G.作DF⊥x轴于点F.在y=﹣3x+3中,令x=0,解得:y=3,即B的坐标是(0,3).令y=0,解得:x=1,即A的坐标是(1,0).则OB=3,OA=1.∵∠BAD=90°,∴∠BAO+∠DAF=90°,又∵直角△ABO中,∠BAO+∠OBA=90°,∴∠DAF=∠OBA,在△OAB和△FDA中,,∴△OAB≌△FDA(AAS),同理,△OAB≌△FDA≌△BEC,∴AF=OB=EC=3,DF=OA=BE=1,故D的坐标是(4,1),C的坐标是(3,4).代入y=得:k=4,则函数的解析式是:y=.∴OE=4,则C的纵坐标是4,把y=4代入y=得:x=1.即G的坐标是(1,4),∴CG=2,∴b=2.故答案为:2.15.【解答】解:由旋转得:AD=EF,AB=AE,∠D=90°,∵DE=EF,∴AD=DE,即△ADE为等腰直角三角形,根据勾股定理得:AE==3,则AB=AE=3,故答案为:3三.解答题(共8小题,满分75分)16.【解答】(1)证明:连接OD.∵DE是⊙O的切线,∵DE⊥OD,∵AC⊥DE,∴OD∥AC,∴∠ODB=∠C,∵OB=OD,∴∠B=∠ODB,∴∠B=∠C,∴AB=AC.(2)设AC与⊙O相切于点F,连接OF,作AH⊥BC于H.设半径为r.∵AB=AC,AH⊥BC,∴BH=CH=1,∴AH==2,∴tan∠C==2,∵∠OFE=∠ODE=∠DEF=90°,∴四边形ODEF是矩形,∵OD=OF,∴四边形ODEF是正方形,∴EF=DE=r,∵tanC==2,∴EC=,∴AF=﹣r﹣r=﹣r,在Rt△AOF中,∵OA2=AF2+OF2,∴(﹣r)2=r2+(﹣r)2,解得r=.17.【解答】解:(1)将这种水果每斤的售价降低x元,则每天的销售量是100+×20=100+200x(斤);故答案为:100+200x(2)设这种水果每斤售价降低x元,根据题意得:(4﹣2﹣x)(100+200x)=300,解得:x=或x=1,当x=时,销售量是100+200×=200<260;当x=1时,销售量是100+200=300(斤).∵每天至少售出260斤,∴x=1.4﹣1=3,答:老板需将每斤的售价定为3元.18.【解答】解:画树状图为:共有9种等可能的结果数,其中两次抽取的牌上的数字都是偶数的结果数为2,所以两次抽取的牌上的数字都是偶数的概率==.19.【解答】解:根据题意可得:y=(x﹣40)[300﹣5(x﹣50)]=(x﹣40)(550﹣5x)=﹣5x2+750x﹣22000.20.【解答】(1)证明:连接AD,∵AB为半圆O的直径,∴∠ADB=∠ADC=90°,∵BD=DE,∴=,∴∠BAD=∠CAD,在△BAD和△CAD中,,∴△BAD≌△CAD(ASA),∴BD=DC,即点D是BC的中点;(2)解:∵△BAD≌△CAD,∴AB=AC,∵∠ADC=90°,点

1 / 16
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功