开放性问题一、选择题1.1.(2018·浙江舟山·3分)某届世界杯的小组比赛规则:四个球队进行单循环比赛(每两队赛一场),胜一场得3分,平一场得1分,负一场得0分,某小组比赛结束后,甲、乙,丙、丁四队分别获得第一,二,三,四名,各队的总得分恰好是四个连续奇数,则与乙打平的球队是()A.甲B.甲与丁C.丙D.丙与丁【考点】推理与论证【分析】需要推理出甲、乙、丙、丁四人的分数:每个人都要比赛3场,要是3场全胜得最高9分,根据已知“甲、乙,丙、丁四队分别获得第一,二,三,四名”和“各队的总得分恰好是四个连续奇数”,可推理出四人的分数各是多少,再根据胜、平、负一场的分数去讨论打平的场数。【解答】解:小组赛一共需要比赛场,由分析可知甲是最高分,且可能是9或7分,当甲是9分时,乙、丙、丁分别是7分、5分、3分,因为比赛一场最高得分3分,所以4个队的总分最多是6×3=18分,而9+7+5+318,故不符合;当甲是7分时,乙、丙、丁分别是5分、3分、1分,7+5+3+118,符合题意,因为每人要参加3场比赛,所以甲是2胜一平,乙是1胜2平,丁是1平2负,则甲胜丁1次,胜丙1次,与乙打平1次,因为丙是3分,所以丙只能是1胜2负,乙另外一次打平是与丁,则与乙打平的是甲、丁故答案是B。【点评】要注重分类讨论.二.解答题(要求同上一)1.(2018·湖南省衡阳·10分)如图,已知直线y=﹣2x+4分别交x轴、y轴于点A、B,抛物线过A,B两点,点P是线段AB上一动点,过点P作PC⊥x轴于点C,交抛物线于点D.(1)若抛物线的解析式为y=﹣2x2+2x+4,设其顶点为M,其对称轴交AB于点N.①求点M、N的坐标;②是否存在点P,使四边形MNPD为菱形?并说明理由;(2)当点P的横坐标为1时,是否存在这样的抛物线,使得以B、P、D为顶点的三角形与△AOB相似?若存在,求出满足条件的抛物线的解析式;若不存在,请说明理由.【解答】解:(1)①如图1,∵y=﹣2x2+2x+4=﹣2(x﹣)2+,∴顶点为M的坐标为(,),当x=时,y=﹣2×+4=3,则点N坐标为(,3);②不存在.理由如下:MN=﹣3=,设P点坐标为(m,﹣2m+4),则D(m,﹣2m2+2m+4),∴PD=﹣2m2+2m+4﹣(﹣2m+4)=﹣2m2+4m,∵PD∥MN,当PD=MN时,四边形MNPD为平行四边形,即﹣2m2+4m=,解得m1=(舍去),m2=,此时P点坐标为(,1),∵PN==,∴PN≠MN,∴平行四边形MNPD不为菱形,∴不存在点P,使四边形MNPD为菱形;(2)存在.如图2,OB=4,OA=2,则AB==2,当x=1时,y=﹣2x+4=2,则P(1,2),∴PB==,设抛物线的解析式为y=ax2+bx+4,把A(2,0)代入得4a+2b+4=0,解得b=﹣2a﹣2,∴抛物线的解析式为y=ax2﹣2(a+1)x+4,当x=1时,y=ax2﹣2(a+1)x+4=a﹣2a﹣2+4=2﹣a,则D(1,2﹣a),∴PD=2﹣a﹣2=﹣a,∵DC∥OB,∴∠DPB=∠OBA,∴当=时,△PDB∽△BOA,即=,解得a=﹣2,此时抛物线解析式为y=﹣2x2+2x+4;当=时,△PDB∽△BAO,即=,解得a=﹣,此时抛物线解析式为y=﹣x2+3x+4;综上所述,满足条件的抛物线的解析式为y=﹣2x2+2x+4或y=﹣x2+3x+4.2.(2018•株洲市)下图为某区域部分交通线路图,其中直线,直线与直线都垂直,,垂足分别为点A、点B和点C,(高速路右侧边缘),上的点M位于点A的北偏东30°方向上,且BM=千米,上的点N位于点M的北偏东方向上,且,MN=千米,点A和点N是城际线L上的两个相邻的站点.(1)求之间的距离(2)若城际火车平均时速为150千米/小时,求市民小强乘坐城际火车从站点A到站点N需要多少小时?(结果用分数表示)【答案】(1)2;(2)小时.【解析】分析:(1)直接利用锐角三角函数关系得出DM的长即可得出答案;(2)利用tan30°=,得出AB的长,进而利用勾股定理得出DN的长,进而得出AN的长,即可得出答案.详解:(1)过点M作MD⊥NC于点D,∵cosα=,MN=2千米,∴cosα=,解得:DM=2(km),答:l2和l3之间的距离为2km;(2)∵点M位于点A的北偏东30°方向上,且BM=千米,∴tan30°=,解得:AB=3(km),可得:AC=3+2=5(km),∵MN=2km,DM=2km,∴DN==4(km),则NC=DN+BM=5(km),∴AN==10(km),∵城际火车平均时速为150千米/小时,∴市民小强乘坐城际火车从站点A到站点N需要小时.点睛:此题主要考查了解直角三角形的应用,正确得出AN的长是解题关键.3.(2018·四川自贡·14分)如图,抛物线y=ax2+bx﹣3过A(1,0)、B(﹣3,0),直线AD交抛物线于点D,点D的横坐标为﹣2,点P(m,n)是线段AD上的动点.(1)求直线AD及抛物线的解析式;(2)过点P的直线垂直于x轴,交抛物线于点Q,求线段PQ的长度l与m的关系式,m为何值时,PQ最长?(3)在平面内是否存在整点(横、纵坐标都为整数)R,使得P、Q、D、R为顶点的四边形是平行四边形?若存在,直接写出点R的坐标;若不存在,说明理由.【分析】(1)根据待定系数法,可得抛物线的解析式;根据自变量与函数值的对应关系,可得D点坐标,再根据待定系数法,可得直线的解析式;(2)根据平行于y轴直线上两点间的距离是较大的纵坐标减较小的纵坐标,可得二次函数,根据二次函数的性质,可得答案;(3)根据PQ的长是正整数,可得PQ,根据平行四边形的性质,对边平行且相等,可得DR的长,根据点的坐标表示方法,可得答案.【解答】解:(1)把(1,0),(﹣3,0)代入函数解析式,得,解得,抛物线的解析式为y=x2+2x﹣3;当x=﹣2时,y=(﹣2)2+2×(﹣2)﹣3,解得y=﹣3,即D(﹣2,﹣3).设AD的解析式为y=kx+b,将A(1,0),D(﹣2,﹣3)代入,得,解得,直线AD的解析式为y=x﹣1;(2)设P点坐标为(m,m﹣1),Q(m,m2+2m﹣3),l=(m﹣1)﹣(m2+2m﹣3)化简,得l=﹣m2﹣m+2配方,得l=﹣(m+)2+,当m=﹣时,l最大=;(3)DR∥PQ且DR=PQ时,PQDR是平行四边形,由(2)得0<PQ≤,又PQ是正整数,∴PQ=1,或PQ=2.当PQ=1时,DR=1,﹣3+1=﹣2,即R(﹣2,﹣2),﹣3﹣1=﹣4,即R(﹣2,﹣4);当PQ=2时,DR=2,﹣3+2=﹣1,即R(﹣2,﹣1),﹣3﹣2=﹣5,即R(﹣2,﹣5),综上所述:R点的坐标为(﹣2,﹣2),(﹣2,﹣4),(﹣2,﹣1)(﹣2,﹣5),使得P、Q、D、R为顶点的四边形是平行四边形.【点评】本题考查了二次函数综合题,解(1)的关键是待定系数法;解(2)的关键是利用二次函数的性质;解(3)的关键是利用DR=PQ且是正整数得出DR的长.4(2018·浙江舟山·8分)某厂为了检验甲、乙两车间生产的同一款新产品的合格情况(尺寸范围为176mm-185mm的产品为合格),随机各轴取了20个样品进行测,过程如下:收集数据(单位:mm):甲车间:168,175,180,185,172,189,185,182,185,174,192,180,185,178,173,185,169,187,176,180。乙车间:186,180,189,183,176,173,178,167,180,175,178,182,180,179,185,180,184,182,180,183。整理数据:分析数据:应用数据:(1)计算甲车间样品的合格率。(2)估计乙车间生产的1000个该款新产品中合格产品有多少个?(3)结合上述数据信息,请判断个车间生产的新产品更好,并说明理由,【考点】数据分析【解析】【分析】(1)由题意可知,合格的产品的条件为尺寸范围为176mm-185mm的产品,所以甲车间合格的产品数是(5+6),再除总个数即可;(2)需要先求出乙车间的产品的合格率;而合格产品数(a+b)的值除了可以样品数据中里数出来,也可以由20-(1+2+2)得到;(3)分析数据中的表格提供了甲、乙车间的平均数、众数、中位数和方差数据,根据它们的特点结合数据的大小进行比较及评价即可【解答】(1)甲车间样品的合格率为×100%=55%(2)∵乙车间样品的合格产品数为20-(1+2+2)=15(个),∴乙车间样品的合格率为×100%=75%。∴乙车间的合格产品数为1000×75%=750(个).(3)①从样品合格率看,乙车间合格率比甲车间高,所以乙车间生产的新产品更好。②从样品的方差看,甲、乙平均数相等,且均在合格范围内,而乙的方差小于甲的方差,说明乙比甲稳定,所以乙车间生产的新产品更好.【点评】本题考查数据分析及应用数据的能力5.(2018年四川省内江市)对于三个数a,b,c,用M{a,b,c}表示这三个数的中位数,用max{a,b,c}表示这三个数中最大数,例如:M{﹣2,﹣1,0}=﹣1,max{﹣2,﹣1,0}=0,max{﹣2,﹣1,a}=解决问题:(1)填空:M{sin45°,cos60°,tan60°}=,如果max{3,5﹣3x,2x﹣6}=3,则x的取值范围为;(2)如果2•M{2,x+2,x+4}=max{2,x+2,x+4},求x的值;(3)如果M{9,x2,3x﹣2}=max{9,x2,3x﹣2},求x的值.【考点】AD:一元二次方程的应用;8A:一元一次方程的应用;CE:一元一次不等式组的应用;T5:特殊角的三角函数值.【分析】(1)根据定义写出sin45°,cos60°,tan60°的值,确定其中位数;根据max{a,b,c}表示这三个数中最大数,对于max{3,5﹣3x,2x﹣6}=3,可得不等式组:则,可得结论;(2)根据新定义和已知分情况讨论:①2最大时,x+4≤2时,②2是中间的数时,x+2≤2≤x+4,③2最小时,x+2≥2,分别解出即可;(3)不妨设y1=9,y2=x2,y3=3x﹣2,画出图象,根据M{9,x2,3x﹣2}=max{9,x2,3x﹣2},可知:三个函数的中间的值与最大值相等,即有两个函数相交时对应的x的值符合条件,结合图象可得结论.【解答】解:(1)∵sin45°=,cos60°=,tan60°=,∴M{sin45°,cos60°,tan60°}=,∵max{3,5﹣3x,2x﹣6}=3,则,∴x的取值范围为:,故答案为:,;(2)2•M{2,x+2,x+4}=max{2,x+2,x+4},分三种情况:①当x+4≤2时,即x≤﹣2,原等式变为:2(x+4)=2,x=﹣3,②x+2≤2≤x+4时,即﹣2≤x≤0,原等式变为:2×2=x+4,x=0,③当x+2≥2时,即x≥0,原等式变为:2(x+2)=x+4,x=0,综上所述,x的值为﹣3或0;(3)不妨设y1=9,y2=x2,y3=3x﹣2,画出图象,如图所示:结合图象,不难得出,在图象中的交点A、B点时,满足条件且M{9,x2,3x﹣2}=max{9,x2,3x﹣2}=yA=yB,此时x2=9,解得x=3或﹣3.【点评】本题考查了方程和不等式的应用及新定义问题,理解新定义,并能结合图象,可以很轻松将抽象题或难题破解,由此看出,图象在函数相关问题的作用是何等重要.